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Pixel Deflection
Defense Overview

• Pixel Deflection is a technique that defends against adversarial 
examples by randomly replacing pixels with nearby neighbors.

• This defense is non-differentiable and randomized, making existing  
attack algorithms fail at generating adversarial examples.

Attack

• We apply BPDA and EOT to generate adversarial examples. 

• Evaluated over 1000 randomly chosen ImageNet images, with an l-
infinity perturbation bound of 4/255, our attack reduces the accuracy of 
the defended classifier to 3%.

Demonstration

Background

• Adversarial Examples are inputs specifically crafted to fool a neural network.

Evaluation

• We generate adversarial examples in the white box threat model, where the  
adversary knows the model architecture and parameters.

Backward Pass Differentiable Approximation

• BPDA is a generic attack framework introduced by Athalye et al. 2018a to 
generate adversarial examples for non-differentiable defenses

 
 
 

 

• Run the forward pass as usual to obtain the input Y given the network. On the 
backward pass, replace the non-differentiable pre-processing function with an 
approximation (e.g., by replacing hard thresholding with smoothed version).

Expectation Over Transformation

• EOT is an attack approach introduced by Athalye et al. 2018b to produce 
adversarial examples that are robust to randomized transformations sampled from 
a distribution T by optimizing the expected classification:
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High-level Guided Denoiser
Defense Overview

• High-level representation Guided Denoiser is a technique that defends 
against adversarial examples by denoising inputs using a trained 
neural network before passing them to a standard classifier.

• The denoiser is a differentiable, non-randomized neural network.

Attack

• We apply Projected Gradient Descent (Madry et al. 2018), 
differentiating end-to-end through both the denoiser and the classifier.

• Evaluated over 1000 randomly chosen ImageNet images, with an l-
infinity perturbation bound of 4/255, our attack reduces the accuracy of 
the defended classifier to 0%.

Demonstration

arxiv.org/abs/1804.03286github.com/carlini/pixel-deflection github.com/anishathalye/guided-denoise
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