The K2 Architecture for Trustworthy
Hardware Security Modules

Anish Athalyel, M. Frans Kaashoek!, Nickolai Zeldovichl, Joseph Tassarotti?
TMIT CSAIL 2New York University

HSMs: powerful tools for securing systems

Factor out core security operations

Provide security under host compromise

Many types of HSMs Soulder Ch

U2F token
PCIG k e T
iIPhone Secure Enclave e

PKCS#11 HSM

Certificate Signing HSM

(holds private key)
WhatsApp Backup Key Vault

Hundreds of millions of deployed HSMs

HSMs suffer from bugs

CVE-2019-18672 Lecarn more

e CVSS Severity
Mappings ¢ CPE

STM32F303xB/C Description of device errata

222 Data Read when the CPU accesses successively SRAM address “A” - é’ SUSICHIIA
H d and SRAM address “A + offset of 16 KBytes (0x4000)” Description () conriminsvens
ar Wa re L. Insufficient checks in the finite state machine o
Description 6.2.2 allow a partial reset of cryptographic secr
If the CPU writes to an address A in the SRAM memory and immediately (the cycle after) | breaks the security of U2F for new server regisi L .
reads an address B in the SRAM memory, while B = A+0x4000, the read operation will vulnerability can be exploited by unauthenticatt TPM-Fai: TPM meets Timing and Lattice Attacks
return the content at address A instead of the content of address B. Daniel Moghimi and Berk Sunar, Worcester Polytechnic Institute,

Worcester, MA, USA; Thomas Eisenbarth, University of Liibeck, Liibeck,
Germany; Nadia Heninger, University of California, San Diego, CA, USA

S O ft W a re S eC u ri ty a d V i SO ry YSA' 2 0 1 8 - 0 1 - https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm

H Nitrokey / nitrokey-pro-firmware Public ® Watch 16~ S e Curity i ssue With pa SSWO rd prO
<> Code () Issues 37 i1 Pullrequests 6 (® Actions [Projects applet on YUbIKey NEO
Published date: 2018-01-16 This paper is included in the Proceedings of the

. . : . 29th USENIX S ity S ium.
Fix off by one error in OTP slot range check ™ckne!Ps ¥sA-2018-01 Augusffi:; Y Symposium

I I S I e C a e S 978-1-939133-17-5
g Ial VG- szszszsz merged 1 commit into Nitrokey:master from FlorianUekermani Su mary
Oscar Mira and Roi Martin from the Schibsted security team informed us of a se

Open Authentication) applet on the YubiKey NEO. The YubiKey OATH appletis |

m password (TOTP) and HMAC-based one-time password (HOTP) codes that are t
Authenticator app. To provide an extra layer of protection against unauthorize

Open access to the Proceedings of the
29th USENIX Security Symposium
is sponsored by USENIX.

. o let can be protected with an optional password; a feature unique to the Yul =
CVE-2019-18671 Learn more at National Vulnerability Database (NVD) CVE-2021-31 | re unique fothe
- - - - \ ~/- password (OTP) code generators. The issue may allow an individual in physic
e CVSS Severity Rating e Fix Information e Vulnerable Software Versions ¢ SCAP remove the password protection of the OATH applet and view the TOTP/HOTP

Mappings ¢ CPE Information

Insufficient checks in the USB packet handling of the ShapeShift KeepKey hardware wallet before firmware
6.2.2 allow out-of-bounds writes in the .bss segment via crafted messages. The vulnerability could allow code
execution or other forms of impact. It can be triggered by unauthenticated attackers and the interface is
reachable via WebUSB.

companion Yubico Authenticator app, without knowing the password.
Description

Insufficient length checks in the ShapeShift KeepKey hardware wallet firm:
buffer overflow via crafted messages. The overflow in ethereum_extractTh
can circumvent stack protections and lead to code execution. The vulnerat
over WebUSB.

Minerva: The curse of ECDSA nonces

Systematic analysis of lattice attacks on noisy leakage

Oy SecurityAdvisory 2015-04-14

. o~ Jén Janéar!, Vladimir Sedlaéek!?, Petr Svenda! and Marek Sys!
CVE-2018-6875 Learn more at National Vulnerability Database (NVD) N ’
e CVSS Severity Rating e Fix Information e Vulnerable Software Versions ¢ SCAP Mappings Trackjng IDs: YSA-2015-1 and CVE-2015-3298. 2 Ca Foscari Univarsity of Venice

. {jo8ny, vlada.sedlacek}@mail .muni.cz; {svenda, syso}@fi.muni.cz
e CPE Information
Abstract. We present our discovery’ of a group of side-channel vulnerabilities in imple-

- - mentations of the ECDSA signature algorithm in a widely used Atmel AT90SC FIPS
Desc rl ptlon 140-2 certified smartcard chip and five cryptographic libraries (libgerypt, wolfSSL,
MatrixSSL, SunEC/OpenJDK/Oracle JDK, Crypto++). Vulnerable implementations

. g leak the bit-length of the scalar used in scalar multiplication via timing. Using leaked
Format String vulnerability in KeepKey version 4.0.0 allows attackers to trigger information display (of S umma ry bit-length, we mouat & Tattice attack on & 256-bit curve, afier observing enough
signing operations. We propose two new methods to recover the full private key

infOl'matiOn that ShOUId nOt be aCCGSSIbIe), relatEd tO teXt Contalning CharaCterS that the deVice'S fOI"It |aCkS. }'fquiringjust 50_0ﬂs<i§rﬂla"tures for. Sim"uli‘it?d leakage data, 1200 for real cryptographic

Goal: HSMs without security vulnerabilities

Rule out hardware, software, and timing side-channel vulnerabilities

Threat model

Powerful adversary that gains control of host machine
Full control over I/0O interface to HSM

Physical attacks and other side channels: out of scope

Challenge: timing side channels at hardware level

Cryptographic constant-time software not enough

Tricky hardware timing behavior

"ARM Cortex M3: manual says umull opcode takes 3 to 5 cycles, the 'short' counts (3 or 4) being taken only if both

operands are numerically less than 65536... measurements show that short cycle count could occur not only in the

documented case, but also when one or both of the operands is zero or a power of 2"

System software, CSRs, /0O, peripherals, and persistent storage

Prior work: Knox [OSDI'22] / Information-Preserving Refinement

Information-Preserving Refinement (IPR)

Implementation leaks no more than specification

Knox: verified HSM hardware/software

End-to-end
Monolithic verification of software + hardware

Limited scalability

anish.io/knox

| (C code)

| (durable)

var signing_key =

def initialize(new_key):
signing_key = new_key

def sign_certificate(cert):
rsa_sign(signing_key, cert)

Approach: K2 separation architecture

K2 architecture: isolate |I/O, storage, and computation over secret state

Verify software correctness by leveraging prior work (HACLX)

Verify correctness down to hardware level using a new tool called Concordance

Verity cycle-level timing behavior using a new tool called Chroniton

Approach: K2 separation architecture

K2 architecture: isolate |I/O, storage, and computation over secret state

Verity cycle-level timing behavior using a new tool called Chroniton

K2 separation architecture: logical view

Separate |/O, storage, and computation 1. Read
over secret state: as if running on _ /\ _
CPU running CPU running CPU running
I/O code storage code > app code
separate SoCs TIT TTTT el [111
EDE EDE EDE 3. Handle
- - - - - - command
Handling a single command: split into 5 IIL o IIL
h i i 4. Store i
p ases state
/ USB / EStoragei r?]ce;rrit)crr;/

\/

5. Write
output

K2 architecture: implementation

. CPU running 1/O,
Slngle CPU storage, and ap% code In
phases
11l
Tiny kernel runs phases in sequence EGE

RISC-V PMP + state clearing for isolation

S0 e.g., bug in device driver can't leak secrets ¢

[o] =

Scratch
memory

10

Architecture simplifies timing verification

Core application code runs start-to-finish with

no interruption or intermediate observables

Reads state and command from RAM, writes
new state and response to RAM: no I/O or

persistence

Only timing leakage: end-to-end running time

of handle_command

11

vold handle_command(

state,
command,
hew_state,
response)
1
¥

Verifying timing behavior at a cycle-accurate level

Chroniton: new tool to verify software timing behavior against hardware RTL

Proves that...

a particular hardware implementation (RTL-level)
runs a particular program (binary, memory image, e.g., handle_command)

in constant time (cycles)

for all inputs

12

1 #include "ed25519.h"
2 #define MSG_SIZE 100
3

4

5 void main() {

6 ed25519_sign(sig,
7}

1 module riscv_core
2 (

3 // Inputs

4 input

5 , 1nput

6 ,input [31:
7 , 1nput

8 , 1nput

9 , 1nput

10 ,input [10:
11 , 1nput

12 , 1nput

13 , 1nput

14 ,input [63:
15 , 1nput

16 ,input [31:
17 ,input [31:
18

19 // Outputs
20 youtput [31:

21 “outout [31

An approximation:

unsigned char pk[32], sk[64], buf[MSG_SIZE], sig[64];

R - Complle> -

0]

0]

clk_1
rst_1

mem_d data _rd_1
mem_d_accept_1
mem_d_ack_1
mem_d_error_1
mem_d_resp_tag_1i
mem_1_accept_1i
mem_i_valid_ 1
mem_1_error_1
mem_1i_inst 1

intr_1

reset_vector_i
cpu_id_1

mem_d _addr_o
mem d data wr o

e

$readmemh(" firmware.hex", rom)

13

RTL simulator

testing/fuzzing in RTL-level simulation

test if it runs In
constant time
(on a specific
concrete input)

Chroniton: verifying timing behavior using symbolic execution

#include "ed25519.h"
#define MSG_SIZE 100
unsigned char pk[32], sk[64], buf[MSG_SIZE]l, sigl[64];

void main() {

NOUTERE WN -

OCoNOULT A WN -

module riscv_core
(

// Inputs

input
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput

[31:

[10:

// Outputs

,output [31:
“outout

[31~

0]

0]

S - Complle> -

clk_1
rst_1

mem_d data _rd_1

/ K
formally verity that
It runs in constant

time (for all inputs)

Chroniton

(symbolic RTL
simulation)

e

$readmemh(" firmware.hex", rom)

mem_d_accept_1i

mem_d_ack_1

mem_d_error_1
mem_d_resp_tag_1i
mem_1_accept_1i
mem_i_valid_ 1
mem_i_error_1

mem_i_inst_1

intr_1

reset_vector_1

cpu_id_1i

mem_d _addr_o

14

mem d data wr o

The core: a symbolic RTL simulator

Compile Verilog HDL to Rosette (toriak & Bodik 2014) code

Rosette: solver-aided programming language built on top of Racket

Cycle-level circuit simulation, with concrete or symbolic state

15

Verilog to Rosette compilation

module counter (

1hput clk,

1nput en,

output reg [31:0] counter
);

always @(posedge clk)
1f (en)

counter <= counter + 32'hl;

endmodule

Verilog code

compile to state machine
representation in Rosette

16

(struct

(define

)

(define

(define

(define

state (...))

(new-symbolic-state)

(step state)

(with-1nput state 1input)

(get-output state)

Rosette code

Concrete evaluation of circuits

(define s (nhew-zeroed-state))

state {
counter: (bv #x00000000 32)

¥

(step (with-input s (input 'en #t)))

state {
counter: (bv #x00000001 32)

¥

17

Symbolic evaluation of circuits

(define s (new-symbolic-state))

state {
counter: counter$4dl

¥

(step (with-input s (new-symbolic-1input)))

state {
counter: (ite en$f7c (bvadd (bv 1 32) counter$4dl) counter$4dl)

¥

18

Symbolic execution of software on hardware

. state {
Can have partla”y COncrete, cpu.alu_out_q: (ite (bveq (bv #bl 1) soc.cpu.is_lui_auipc_jal_jalr_addi_add_sub$bd7) ...)
cpu.cpu_state: (bv #x40 8)
cpu.decoded_imm: (ite (&& (bveq (bv #bl 1) soc.cpu.decoder_trigger$caf) ...) ...)

partia”y Sym bOIiC CirCUit State cpu.decoded_imm_j: soc.cpu.decoded_imm_j$4da

cpu.decoded_rs2: soc.cpu.decoded_rs2$92e

Cpu.cpuregs:
@: soc.cpu.cpuregs[0]%$e57

Compiled binary IOaded intO ?f.soc.cpu.cpuregs[1:|$a®f

ram:
. "L | @: soc.ram.ram[@]%$al2
CIrCUIt S ROM 1: soc.ram.ram[1]%$fe8

rom:

: (bv #x20001117 32)
: (bv #x80010113 32)
: (bv #x014000ef 32)
: (bv #x070000ef 32)
: (bv #x0ff00513 32)
: (bv #x05c000ef 32)

What we are symbolically

o p W NP

executing: circuit's step function

SoC state, including CPU and memory state

19

Verifying timing behavior

Make input data symbolic

Just some bytes in data memory

Count cycles until hardware finishes executing

Check that completion time is independent of symbolic variables

That's all we need for basic examples!

Ed25519 on PicoRV32, verified to run in 4,046,295 cycles

20

#1nclude "ed25519.h"

#define MSG_SIZE 100
unsigned char pk[32], sk[64],
msg[MSG_SIZE], sig[064];

void main() {
ed25519_s1ign(sig, msg,
sizeof(msg), pk, sk);

Case studies: high confidence in non-leakage

PicoRV32 Ed25519 4,046,295 2 hours 0

biRISC-V Ed25519 692,287 24 hours 10
OpenTitan Big

Number Accelerator X25519 114,490 10 hours 5

(OTBN)

21

Case studies: not overly conservative

if (secret) { Constant-time cryptography and parsing

” _ % %l o : :
result = *a + *b; avoid branching on secrets, even when

asm volatile(
"beq zero, zero, Of \n\t" convenient

"0: \n\t"

s Verified constant-time on PicoRV32
} else {

*result = *a - *b;

asm volatile("nop");

Need different padding for biRISC-V

Code running on PicoRV32

22

Case studies: HSM following K2 architecture

CA certificate signing HSM (signature oracle)
Hardware: OpenTitan SoC

Software
K2 kernel
/O code

Storage code

Application code, on top of HACL* library

Implemented but not yet verified

23

Related work

Hardware/software co-verification: Bedrock2 [PLDI'21], CakeML [PLDI'19]

Focused on correctness, not security

Application security verification: Ironclad Apps [OSDI'14]

Doesn't cover hardware or side channels

Verified cryptography: ct-verif [USEC'16], HACL [CCS'17], Fiat Crypto [S&P'19]

Doesn't cover hardware-level timing behavior

24

Summary

K2 architecture: separate I/O, storage, and computation over secret state

Chroniton: verify timing at hardware level using whole-circuit symbolic execution

anish.io/k?2

github.com/anishathalye/chroniton

25

http://anish.io/k2
http://github.com/anishathalye/chroniton

