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HSMs: powerful tools for securing systems

Factor out core security operations

Provide security under host compromise

Many types of HSMs Soulder Ch

U2F token
PCIG k e T
iIPhone Secure Enclave e

PKCS#11 HSM

Certificate Signing HSM

(holds private key)
WhatsApp Backup Key Vault

Hundreds of millions of deployed HSMs



HSMs suffer from bugs
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Goal: HSMs without security vulnerabilities

Rule out hardware, software, and timing side-channel vulnerabilities

Threat model

Powerful adversary that gains control of host machine
Full control over I/0O interface to HSM

Physical attacks and other side channels: out of scope



Challenge: timing side channels at hardware level

Cryptographic constant-time software not enough

Tricky hardware timing behavior

"ARM Cortex M3: manual says umull opcode takes 3 to 5 cycles, the 'short' counts (3 or 4) being taken only if both

operands are numerically less than 65536... measurements show that short cycle count could occur not only in the

documented case, but also when one or both of the operands is zero or a power of 2"

System software, CSRs, /0O, peripherals, and persistent storage



Prior work: Knox [OSDI'22] / Information-Preserving Refinement

Information-Preserving Refinement (IPR)

Implementation leaks no more than specification

Knox: verified HSM hardware/software

End-to-end
Monolithic verification of software + hardware

Limited scalability

anish.io/knox

| (C code)

| (durable)

var signing_key =

def initialize(new_key):
signing_key = new_key

def sign_certificate(cert):
rsa_sign(signing_key, cert)



Approach: K2 separation architecture

K2 architecture: isolate |I/O, storage, and computation over secret state

Verify software correctness by leveraging prior work (HACLX)

Verify correctness down to hardware level using a new tool called Concordance

Verity cycle-level timing behavior using a new tool called Chroniton



Approach: K2 separation architecture

K2 architecture: isolate |I/O, storage, and computation over secret state

Verity cycle-level timing behavior using a new tool called Chroniton



K2 separation architecture: logical view

Separate |/O, storage, and computation 1. Read
over secret state: as if running on _ /\ _
CPU running CPU running CPU running
I/O code storage code > app code
separate SoCs TIT TTTT el [ 111
EDE EDE EDE 3. Handle
- - - - - - command
Handling a single command: split into 5 IIL o IIL
h i i 4. Store i
p ases state
/ USB / EStoragei r?]ce;rrit)crr;/

\/

5. Write
output



K2 architecture: implementation

. CPU running 1/O,
Slngle CPU storage, and ap% code In
phases
11l
Tiny kernel runs phases in sequence EGE

RISC-V PMP + state clearing for isolation

S0 e.g., bug in device driver can't leak secrets ¢

[o] =

Scratch
memory
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Architecture simplifies timing verification

Core application code runs start-to-finish with

no interruption or intermediate observables

Reads state and command from RAM, writes
new state and response to RAM: no I/O or

persistence

Only timing leakage: end-to-end running time

of handle_command

11

vold handle_command(

state,
command,
hew_state,
response)
1
¥



Verifying timing behavior at a cycle-accurate level

Chroniton: new tool to verify software timing behavior against hardware RTL

Proves that...

a particular hardware implementation (RTL-level)
runs a particular program (binary, memory image, e.g., handle_command)

in constant time (cycles)

for all inputs

12



1 #include "ed25519.h"
2 #define MSG_SIZE 100
3

4

5 void main() {

6 ed25519_sign(sig,
7}

1 module riscv_core
2 (

3 // Inputs

4 input

5 , 1nput

6 ,input [ 31:
7 , 1nput

8 , 1nput

9 , 1nput

10 ,input [ 10:
11 , 1nput

12 , 1nput

13 , 1nput

14 ,input [ 63:
15 , 1nput

16 ,input [ 31:
17 ,input [ 31:
18

19 // Outputs
20 youtput [ 31:

21 “outout [ 31

An approximation:

unsigned char pk[32], sk[64], buf[MSG_SIZE], sig[64];

R - Complle> -

0]

0]

clk_1
rst_1

mem_d data _rd_1
mem_d_accept_1
mem_d_ack_1
mem_d_error_1
mem_d_resp_tag_1i
mem_1_accept_1i
mem_i_valid_ 1
mem_1_error_1
mem_1i_inst 1

intr_1

reset_vector_i
cpu_id_1

mem_d _addr_o
mem d data wr o

e

$readmemh(" firmware.hex", rom)

13

RTL simulator

testing/fuzzing in RTL-level simulation

test if it runs In
constant time
(on a specific
concrete input)



Chroniton: verifying timing behavior using symbolic execution

#include "ed25519.h"
#define MSG_SIZE 100
unsigned char pk[32], sk[64], buf[MSG_SIZE]l, sigl[64];

void main() {

NOUTERE WN -

OCoNOULT A WN -

module riscv_core
(

// Inputs

input
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput
, 1nput

[ 31:

[ 10:

// Outputs

,output [ 31:
“outout

[ 31~

0]

0]

S - Complle> -

clk_1
rst_1

mem_d data _rd_1

/ K
formally verity that
It runs in constant

time (for all inputs)

Chroniton

(symbolic RTL
simulation)

e

$readmemh(" firmware.hex", rom)

mem_d_accept_1i

mem_d_ack_1

mem_d_error_1
mem_d_resp_tag_1i
mem_1_accept_1i
mem_i_valid_ 1
mem_i_error_1

mem_i_inst_1

intr_1

reset_vector_1

cpu_id_1i

mem_d _addr_o
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mem d data wr o



The core: a symbolic RTL simulator

Compile Verilog HDL to Rosette (toriak & Bodik 2014) code

Rosette: solver-aided programming language built on top of Racket

Cycle-level circuit simulation, with concrete or symbolic state

15



Verilog to Rosette compilation

module counter (

1hput clk,

1nput en,

output reg [31:0] counter
);

always @(posedge clk)
1f (en)

counter <= counter + 32'hl;

endmodule

Verilog code

compile to state machine
representation in Rosette

16

(struct

(define

)

(define

(define

(define

state (...))

(new-symbolic-state)

(step state)

(with-1nput state 1input)

(get-output state)

Rosette code



Concrete evaluation of circuits

(define s (nhew-zeroed-state))

state {
counter: (bv #x00000000 32)

¥

(step (with-input s (input 'en #t)))

state {
counter: (bv #x00000001 32)

¥

17



Symbolic evaluation of circuits

(define s (new-symbolic-state))

state {
counter: counter$4dl

¥

(step (with-input s (new-symbolic-1input)))

state {
counter: (ite en$f7c (bvadd (bv 1 32) counter$4dl) counter$4dl)

¥

18



Symbolic execution of software on hardware

. state {
Can have partla”y COncrete, cpu.alu_out_q: (ite (bveq (bv #bl 1) soc.cpu.is_lui_auipc_jal_jalr_addi_add_sub$bd7) ...)
cpu.cpu_state: (bv #x40 8)
cpu.decoded_imm: (ite (&& (bveq (bv #bl 1) soc.cpu.decoder_trigger$caf) ...) ...)

partia”y Sym bOIiC CirCUit State cpu.decoded_imm_j: soc.cpu.decoded_imm_j$4da

cpu.decoded_rs2: soc.cpu.decoded_rs2$92e

Cpu.cpuregs:
@: soc.cpu.cpuregs[0]%$e57

Compiled binary IOaded intO ?f.soc.cpu.cpuregs[1:|$a®f

ram:
. "L | @: soc.ram.ram[@]%$al2
CIrCUIt S ROM 1: soc.ram.ram[1]%$fe8

rom:

: (bv #x20001117 32)
: (bv #x80010113 32)
: (bv #x014000ef 32)
: (bv #x070000ef 32)
: (bv #x0ff00513 32)
: (bv #x05c000ef 32)

What we are symbolically

o p W NP

executing: circuit's step function

SoC state, including CPU and memory state

19



Verifying timing behavior

Make input data symbolic

Just some bytes in data memory

Count cycles until hardware finishes executing

Check that completion time is independent of symbolic variables

That's all we need for basic examples!

Ed25519 on PicoRV32, verified to run in 4,046,295 cycles

20

#1nclude "ed25519.h"

#define MSG_SIZE 100
unsigned char pk[32], sk[64],
msg[MSG_SIZE], sig[064];

void main() {
ed25519_s1ign(sig, msg,
sizeof(msg), pk, sk);



Case studies: high confidence in non-leakage

PicoRV32 Ed25519 4,046,295 2 hours 0

biRISC-V Ed25519 692,287 24 hours 10
OpenTitan Big

Number Accelerator X25519 114,490 10 hours 5

(OTBN)

21




Case studies: not overly conservative

if (secret) { Constant-time cryptography and parsing

” _ % %l o : :
result = *a + *b; avoid branching on secrets, even when

asm volatile(
"beq zero, zero, Of \n\t" convenient

"0: \n\t"

s Verified constant-time on PicoRV32
} else {

*result = *a - *b;

asm volatile("nop");

Need different padding for biRISC-V

Code running on PicoRV32

22



Case studies: HSM following K2 architecture

CA certificate signing HSM (signature oracle)
Hardware: OpenTitan SoC

Software
K2 kernel
/O code

Storage code

Application code, on top of HACL* library

Implemented but not yet verified

23



Related work

Hardware/software co-verification: Bedrock2 [PLDI'21], CakeML [PLDI'19]

Focused on correctness, not security

Application security verification: Ironclad Apps [OSDI'14]

Doesn't cover hardware or side channels

Verified cryptography: ct-verif [USEC'16], HACL [CCS'17], Fiat Crypto [S&P'19]

Doesn't cover hardware-level timing behavior

24



Summary

K2 architecture: separate I/O, storage, and computation over secret state

Chroniton: verify timing at hardware level using whole-circuit symbolic execution

anish.io/k?2

github.com/anishathalye/chroniton

25


http://anish.io/k2
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