K2 is a new architecture and
verification approach for hardware
security modules (HSMs).

K2 uses rigid separation between I/O, storage, and

computation over secret state to enable modular

anish.io/k2

proofs while providing correctness/security
guarantees across hardware and software.

The K2 Architecture for Trustworthy Hardware Security Modules
Anish Athalyel, M. Frans Kaashoekl, Nickolai Zeldovich?, Joseph Tassarotti2

IMIT CSAIL, 2NYU

An HSM implements a functional specification while aiming to
be free of hardware/software security bugs and timing side
channels.

CA certificate signing HSM
ROM

| (C code)
ar signing_key =
CPU H RAM var signing_xey
~ e
| FRAM def initialize(new_key):
(durable) . .
—| signing_key = new_key
UART

def sign_certificate(cert):
rsa_sign(signing_key, cert)

v v

tx rx rts cts

Implementations can reuse existing crypto software verified
for correctness (we use HACLX).

We set up computation over secret state so that it runs end-to-
end without interruption or intermediate observables. For
verifying security and absence of timing side channels, we use a
new tool called Chroniton that proves that code runs in
constant time at the hardware level, using symbolic execution
of the entire circuit at a cycle-accurate level.

void handle_command(

state, Chroniton => "for all inputs,
command, runs in exactly 11,327,118
new_state, cycles on the OpenTitan SoC."
response)

{

}

K2 is an architecture for HSMs that separates |/O, reading/
writing persistent storage, and computing over secret state into
logically-separate phases that run as if running on isolated
devices.

1. Read
command

CPU running CPU running CPU running
I/O code storage code > app code
N 1111 I N

state

3. Handle
command

¢ O e

state
5
memory

\/

5. Write
output

A

K2 implements the logical design on a single SoC / single CPU
using a tiny kernel that runs phases in sequence, enforcing
isolation using the RISC-V PMP and clearing micro-
architectural state between phases.

CPU running /0,
storage, and app code in
phases
111nl

Scratch
memory

http://anish.io/k2

