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K2 is a new architecture and 
verification approach for hardware 
security modules (HSMs). 

K2 uses rigid separation between I/O, storage, and 
computation over secret state to enable modular 
proofs while providing correctness/security 
guarantees across hardware and software.
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# CA certificate signing HSM

var signing_key = null

def initialize(new_key):
  signing_key = new_key

def sign_certificate(cert):
  rsa_sign(signing_key, cert)

~

An HSM implements a functional specification while aiming to 
be free of hardware/software security bugs and timing side 
channels.

K2 is an architecture for HSMs that separates I/O, reading/
writing persistent storage, and computing over secret state into 
logically-separate phases that run as if running on isolated 
devices.

K2 implements the logical design on a single SoC / single CPU 
using a tiny kernel that runs phases in sequence, enforcing 
isolation using the RISC-V PMP and clearing micro-
architectural state between phases.
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Implementations can reuse existing crypto software verified 
for correctness (we use HACL★). 

We set up computation over secret state so that it runs end-to-
end without interruption or intermediate observables. For 
verifying security and absence of timing side channels, we use a 
new tool called Chroniton that proves that code runs in 
constant time at the hardware level, using symbolic execution 
of the entire circuit at a cycle-accurate level.

void handle_command(
    char *state,
    char *command,
    char *new_state,
    char *response)
{
    ...
}

Chroniton => "for all inputs, 
runs in exactly 11,327,118 
cycles on the OpenTitan SoC."
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