
The K2 Architecture for Trustworthy Hardware Security Modules
Anish Athalye1, M. Frans Kaashoek1, Nickolai Zeldovich1, Joseph Tassarotti2 
1MIT CSAIL, 2NYU

K2 is a new architecture and 
verification approach for hardware 
security modules (HSMs). 

K2 uses rigid separation between I/O, storage, and 
computation over secret state to enable modular 
proofs while providing correctness/security 
guarantees across hardware and software.

anish.io/k2

CPU

ROM
(C code)

RAM

FRAM
(durable)

UART

tx rx rts cts

# CA certificate signing HSM

var signing_key = null

def initialize(new_key):
  signing_key = new_key

def sign_certificate(cert):
  rsa_sign(signing_key, cert)

~

An HSM implements a functional specification while aiming to 
be free of hardware/software security bugs and timing side 
channels.

K2 is an architecture for HSMs that separates I/O, reading/
writing persistent storage, and computing over secret state into 
logically-separate phases that run as if running on isolated 
devices.

K2 implements the logical design on a single SoC / single CPU 
using a tiny kernel that runs phases in sequence, enforcing 
isolation using the RISC-V PMP and clearing micro-
architectural state between phases.

CPU running
I/O code

Storage

CPU running
storage code

CPU running
app code

USB Scratch
memory

1. Read
command

2. Load
state

3. Handle
command

4. Store
state

5. Write
output

Storage

CPU running I/O,
storage, and app code in

phases

USB Scratch
memory

PMP

Implementations can reuse existing crypto software verified 
for correctness (we use HACL★). 

We set up computation over secret state so that it runs end-to-
end without interruption or intermediate observables. For 
verifying security and absence of timing side channels, we use a 
new tool called Chroniton that proves that code runs in 
constant time at the hardware level, using symbolic execution 
of the entire circuit at a cycle-accurate level.

void handle_command(
    char *state,
    char *command,
    char *new_state,
    char *response)
{
    ...
}

Chroniton => "for all inputs, 
runs in exactly 11,327,118 
cycles on the OpenTitan SoC."

http://anish.io/k2

