Verifying Hardware Security Modules

with Information-Preserving Refinement

Anish Athalye, M. Frans Kaashoek, Nickolai Zeldovich
MIT CSAIL

Threat model: adversary compromises host machine, gaining full
control over the 1/0 interface to the HSM.
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Our approach relates an HSM implementation's wire-level
behavior to a functional specification's input-output behavior.

var bad_guesses = 0, secret = 0, pin =

A Knox is a new framework for building

def retrieve(guess):
if bad_guesses >=

e gl hardware security modules (HSMs) with

if guess != pin:
bad_guesses = bad_guesses +

e high assurance through formal verification.

tx rx rts cts return secret

Information-preserving refinement (IPR) says the implementation's
wire-level / timing behavior leaks no information.

Using a new security definition called
information-preserving refinement, Knox helps
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bugs, and timing side channels in HSMs.
We built the Knox framework for verifying HSMs with IPR.
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We built and verified 3 simple HSMs, and we showed that our
approach catches hardware/software bugs and timing channels.

HSM Spec Driver HW SW Proof
core total

PIN-protected backup HSM 32 60 110 2670 190 470
Password-hashing HSM 5 150 90 3020 240 650
TOTP token 10 180 80 2950 360 830
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