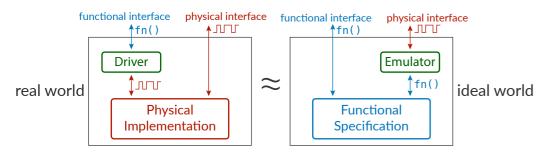
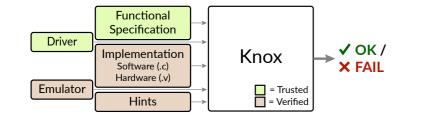

Verifying Hardware Security Modules with Information-Preserving Refinement

Anish Athalye, M. Frans Kaashoek, Nickolai Zeldovich MIT CSAIL


Threat model: adversary compromises host machine, **gaining full control over the I/O interface** to the HSM.


Our approach relates an HSM implementation's **wire-level behavior** to a functional specification's input-output behavior.

Information-preserving refinement (IPR) says the **implementation's** wire-level / timing behavior leaks no information.

We built the *Knox* framework for verifying HSMs with IPR.

We **built and verified 3 simple HSMs**, and we showed that our approach catches hardware/software bugs and timing channels.

HSM	Spec		Driver	HW	SW	Proof
	core	total				
PIN-protected backup HSM	32	60	110	2670	190	470
Password-hashing HSM	5	150	90	3020	240	650
TOTP token	10	180	80	2950	360	830

Knox is a new framework for building hardware security modules (HSMs) with high assurance through formal verification.

Using a new security definition called *information-preserving refinement*, Knox helps developers rule out hardware bugs, software bugs, and timing side channels in HSMs.

anish.io/knox