
Knox is a new framework for building

hardware security modules (HSMs) with

high assurance through formal verification.


Using a new security definition called 
information-preserving refinement, Knox helps 
developers rule out hardware bugs, software 
bugs, and timing side channels in HSMs.
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Threat model: adversary compromises host machine, gaining full 
control over the I/O interface to the HSM.
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var bad_guesses = 0, secret = 0, pin = 0

def store(new_secret, new_pin):
  secret, pin = new_secret, new_pin
  bad_guesses = 0

def retrieve(guess):
  if bad_guesses >= 10:
    return 'No more guesses'
  if guess != pin:
    bad_guesses = bad_guesses + 1
    return 'Incorrect PIN'
  bad_guesses = 0
  return secret

~

Our approach relates an HSM implementation's wire-level 
behavior to a functional specification's input-output behavior.

Information-preserving refinement (IPR) says the implementation's 
wire-level / timing behavior leaks no information.
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We built the Knox framework for verifying HSMs with IPR.

We built and verified 3 simple HSMs, and we showed that our 
approach catches hardware/software bugs and timing channels.
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