Verifying Hardware Security Modules

with Information-Preserving Refinement

Anish Athalye, M. Frans Kaashoek, Nickolai Zeldovich
MIT CSAIL

Threat model: adversary compromises host machine, gaining full
control over the 1/0 interface to the HSM.

[6] — &

Our approach relates an HSM implementation's wire-level
behavior to a functional specification's input-output behavior.

var bad_guesses = 0, secret = 0, pin =

A Knox is a new framework for building

def retrieve(guess):
if bad_guesses >=

e gl hardware security modules (HSMs) with

if guess != pin:
bad_guesses = bad_guesses +

e high assurance through formal verification.

tx rx rts cts return secret

Information-preserving refinement (IPR) says the implementation's
wire-level / timing behavior leaks no information.

Using a new security definition called
information-preserving refinement, Knox helps

Y 170 |ideal wor
= S developers rule out hardware bugs, software
Implementation Specification

bugs, and timing side channels in HSMs.
We built the Knox framework for verifying HSMs with IPR.

real world

Functional
Specification
Implementation Kn oX
Software (.c)
Hardware (.v)

Hints [] = Verified

We built and verified 3 simple HSMs, and we showed that our
approach catches hardware/software bugs and timing channels.

HSM Spec Driver HW SW Proof
core total

PIN-protected backup HSM 32 60 110 2670 190 470
Password-hashing HSM 5 150 90 3020 240 650
TOTP token 10 180 80 2950 360 830

anish.io/knox



http://anish.io/knox

