
Knox is a new framework for building

hardware security modules (HSMs) with

high assurance through formal verification.

Using a new security definition called
information-preserving refinement, Knox helps
developers rule out hardware bugs, software
bugs, and timing side channels in HSMs.

Verifying Hardware Security Modules

with Information-Preserving Refinement

anish.io/knox

Anish Athalye, M. Frans Kaashoek, Nickolai Zeldovich

MIT CSAIL

Threat model: adversary compromises host machine, gaining full
control over the I/O interface to the HSM.

CPU

ROM
(C code)

RAM

FRAM
(durable)

UART

tx rx rts cts

var bad_guesses = 0, secret = 0, pin = 0

def store(new_secret, new_pin):
 secret, pin = new_secret, new_pin
 bad_guesses = 0

def retrieve(guess):
 if bad_guesses >= 10:
 return 'No more guesses'
 if guess != pin:
 bad_guesses = bad_guesses + 1
 return 'Incorrect PIN'
 bad_guesses = 0
 return secret

~

Our approach relates an HSM implementation's wire-level
behavior to a functional specification's input-output behavior.

Information-preserving refinement (IPR) says the implementation's
wire-level / timing behavior leaks no information.

Physical
�lrѴ;l;m|-ঞom

Driver

physical interface

u;-Ѵ��ouѴ7

fn()
=�m1ঞom-Ѵ�bm|;u=-1;

�m1ঞom-Ѵ
"r;1bC1-ঞom

Emulator

fn()
=�m1ঞom-Ѵ�bm|;u=-1;

b7;-Ѵ��ouѴ7

physical interface

fn()ƹ

�m1ঞom-Ѵ
"r;1bC1-ঞom

�lrѴ;l;m|-ঞom
"o[�-u;�Őĺ1ő
�-u7�-u;�Őĺ�ő

�bm|v

	ub�;u
�mo� OK /

FAIL
�l�Ѵ-|ou Ʒ�$u�v|;7

Ʒ�(;ubC;7

We built the Knox framework for verifying HSMs with IPR.

We built and verified 3 simple HSMs, and we showed that our
approach catches hardware/software bugs and timing channels.

http://anish.io/knox

