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HSMs: powerful tools for securing systems

Factor out core security operations

Provide security under host compromise

Many types of HSMs e U2F Security Token
U2F token USB :
. R O
PKCS#11 HSM ,
Hardware wallet (holds private key)

iIPhone Secure Enclave

Hundreds of millions of deployed HSMs



HSMs suffer from bugs
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Goal: HSMs without security vulnerabilities

Rule out hardware, software, and timing side-channel vulnerabilities

Threat model

Powerful adversary that gains control of host machine
Full control over |/O interface to HSM
Physical attacks and other side channels: out of scope



Approach: formal verification

Covers security and timing channels Specification

Implementation KNOX v OK/

Includes hardware and software Software (.c) X FAIL
Hardware (.v)

Low proof overhead



Related work

Knox is the first to verify correctness and security of hardware and software

Including timing side channels

Hardware/software co-verification: Bedrock2 [PLDI'21], CakeML [PLDI'19]

Focused on correctness, not security

Application security verification: Ironclad Apps [OSDI'14]

Doesn't cover hardware or side channels



Contributions

Information-preserving refinement (IPR), a new security definition
Knox framework for verifying HSMs using IPR

Case studies: built and verified 3 simple HSMs

PIN-protected backup HSM
Password-hashing HSM
TOTP token

Approach rules out hardware bugs, software bugs, and timing side channels



Example: PIN-protected backup HSM

var bad_guesses = 0, secret = 0, pin = Functional specification

def store(new_secret, new_pin):
secret = new_secret Describes input-output behavior
pln = new_pln
bad_guesses = No notion of timing

def retrieve(guess):
1T bad_guesses >=

return

1f guess != pin:
bad_guesses = bad_guesses +
return

bad_guesses =
return secret



Implementation

Implementation includes hardware/software

CPU

Code that runs on it
Peripherals
Persistent memory

Interface: wires

Read output wires ... .. ==
Write input wires
Walit for a cycle

| ROM
(C code)
CPU T RAM
| FRAM
(durable)
—
UART
| 4 | 4
v | v |

tx rx rts cts




How to relate implementation to spec?

Want to capture:

(1) Functional correctness: implementation implements spec
(2) Non-leakage: Wire-level interface leaks no more than spec
Including timing, e.g., PIN comparison with strcmp()

Implementation is at the level of wires

Specification is at the level of functions (has no notion of wires)
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Defined as indistinguishability
between a real and an ideal world

Inspired by formalization of zero
knowledge in cryptography

Information-preserving refinement (IPR)

Incomparable interfaces

physical */ \* functional

interface

i)
A

interface
fn()
A

Physical
Implementation

\4

A\

Functional
Specification
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real world

ideal world




Defined as indistinguishability
between a real and an ideal world

Inspired by formalization of zero
knowledge in cryptography

Interface adapters in each direction

functional
interface

Information-preserving refinement (IPR)

Matching interfaces

/

physical
interface

U

\

functional physical
interface interface

)
|

\4
Physical
Implementation

1

I

fn()
i
l

A

Functlonal
Specification
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real world

ideal world




IPR: driver

Driver: translates spec-level operations
to wire-level I/0O

Like a device driver in an OS
Trusted, part of the specification

Captures functional correctness
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(define (store secret pin)

(senc
(senc

(senc

(recv-

oyte #x02)
pytes pin)
pytes secret)

pyte))

(define (wait-until-clear-to-send)
(while (get-output 'rts))
(tick)))

(define (send-bit bit)
(set-1nput 'rx bit)
(for ([1 (in-range BAUD-RATE)])
(tick)))

(define (send-byte byte)
(wait-until-clear-to-send)
(send-bit #b0)

(for ([1 (in-range 8)])
(send-bit (extract-bit byte 1)))
(send-b1it #bl))



IPR: emulator

Emulator mimics wire-level behavior

Without direct access to secrets
With queries to spec-level operations

Proof artifact, constructed by developer
(jJust needs to exist)

Captures non-leakage
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IPR rules out timing channels

What if circuit leaked info
through timing, e.g., strcmp()?

State =[ PIN: 1337, Secret: 0x47...32 ]

Input: Il retrieve(pin=0000)
Emulator does not exist: can  ciruit output LU

get return value using query to
retrieve(), but can't

reproduce timing behavior

.. ERR_BAD_GUESS

nput: 1] ][ J[J[ ] E retrieve(pin=1234)

Circuit Output: IR ERR_BAD_GUESS

< >
timing difference
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IPR: emulator construction

Copy circuit, but replace operations on

physical

secret state with queries to spec interface

o
A

\4

Physical

Implementation
State = [ PIN, Secret ]

physical
interface
JTU1r
A
\/
[Emu ator]
Ifn( )
Functional
Specification
State = [ PIN, Secret ]

real world

16

ideal world




IPR transfers security properties from spec to impl

Only reveals secret when correct PIN supplied V0" bad-guesses = 0, secret =0, pin =

def store(new_secret, new_pin):
Enforces guess limits secret = new_secret
pin = new_pin
bad_guesses =
Forgets old secret/pin when store() is called
def retrieve(guess):
1T bad_guesses >=

Doesn't leak past PIN guesses return
1f guess != pin:
bad_guesses = bad_guesses +
return

bad_guesses =
return secret
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Knox framework

~ 3000 LOC on top of Rosette [PLDI'14] | Driver |
Functional -
Symbolically execute entire circuit + code >pecincation
Impl tati v OK/
. , , s ottware fc)on > Knox ™ % FAIL
Relies on human guidance through hints Hardware ()
[ Hints ]—»
1
[Emulator]

= Trusted

]
[ ] = Verified
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Evaluation: case studies

3 simple HSMs, run on an FPGA

Hardware: minimal RISC-V CPU,

cryptographic accelerator, UART, ... HM Spec  Driver HW SW Proof
core total

_ : : PIN-protected backup HSM 32 60 110 2670 190 470

Software: control logic, peripheral Password-hashing HSM 5 150 90 3020 240 650

drivers. HOTP. HMAC TOTP token 10 180 80 2950 360 830

Lines of code for case studies

Succinct specifications

Low proof overhead
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Subtle bug involving persistence and timing

vold retrieve(uint8_t *guess) {

retrieve guess PIN = 0000, PIN = 0001, ...
v ; 1f (lconstant_time_cmp(&entry->pin, guess)) {

guess Is Correcy &uess IS Incorrect :
E entry->bad_guesses++;
' uart_write( );

return,
bad_guesses = 07 : h

: entry->bad_guesses = 0;
v

.......................................................... force deVice reset
Adversary can't tell which branch was taken
(no outputs up to this point) but still, security bug! ¥
Resets guess count to 0.

\/
bad_guesses++
20



SoloKey: pattern similar to our bug

Other HSMs like OpenSK have more
robust code to avoid this issue
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1int8

if (
{

}

else

{

}

Real implementations have similar code

ret == CTAP2_ERR_PIN_AUTH_INVALID)

ctap_decrement_pin_attempts();

if (ctap_device_boot_locked())

{
return CTAP2_ERR_PIN_AUTH_BLOCKED;

}
return CTAP2_ERR_PIN_AUTH_INVALID;

ctap_reset_pin_attempts();

t ret = verify_pin_auth_ex(CM->pinAuth, (u



Conclusion

Information-preserving refinement (IPR)

Implementation reveals no more information than specification

Knox framework

For verifying HSMs using IPR

Case studies
Built and verified 3 simple HSMs

anish.io/knox
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