Verifying Hardware Security Modules
with Information-Preserving Refinement

Anish Athalye, M. Frans Kaashoek, Nickolai Zeldovich
MIT CSAIL

HSMs: powerful tools for securing systems

Factor out core security operations

Provide security under host compromise

Many types of HSMs e U2F Security Token
U2F token USB :
. R O
PKCS#11 HSM ,
Hardware wallet (holds private key)

iIPhone Secure Enclave

Hundreds of millions of deployed HSMs

HSMs suffer from bugs

CVE-2019-18672 Lecarn more

e CVSS Severity
Mappings ¢ CPE

STM32F303xB/C Description of device errata

2.2.2 Data Read when the CPU accesses successively SRAM address “A”

Description

usenix N
4 THE ADVANCED N
' COMPUTING SYSTEMS

H d and SRAM address “A + offset of 16 KBytes (0x4000)”
ar Wa re oo Insufficient checks in the finite state machine o
Description 6.2.2 allow a partial reset of cryptographic secr
If the CPU writes to an address A in the SRAM memory and immediately (the cycle after) | breaks the security of U2F for new server regisi L .
reads an address B in the SRAM memory, while B = A+0x4000, the read operation will vulnerability can be exploited by unauthenticatt TPM-Fai: TPM meets Timing and Lattice Attacks
return the content at address A instead of the content of address B. Daniel Moghimi and Berk Sunar, Worcester Polytechnic Institute,

Worcester, MA, USA; Thomas Eisenbarth, University of Liibeck, Liibeck,

f ; f-t o . Germany; Nadia Heninger, University of California, San Diego, CA, USA
O W a re S ec u rl ty a d v I So ry YSA- 2 0 1 8 - 0 1 - https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm

H Nitrokey / nitrokey-pro-firmware ' public ® Watch 16 ~ Security issu e With pa SSWOrd prO
<> Code () lIssues 37 1% Pullrequests 6 () Actions [J Projects applet on Yu biKey NEO
. . . Published date: 2018-01-16 This paper is included in the Proceedings of the
T| Min g Si d e C h anne I S Fix off by one error in OTP slot range check Tcknes vsa2o1s-01 S et Alaanth
s2s75252 merged 1 commit into Nitrokey:master from Florianuekernan OUMMary 781939133175

Oscar Mira and Roi Martin from the Schibsted security team informed us of a se
Open Authentication) applet on the YubiKey NEO. The YubiKey OATH appletis |

m password (TOTP) and HMAC-based one-time password (HOTP) codes that are t
Authenticator app. To provide an extra layer of protection against unauthorize

Open access to the Proceedings of the
29th USENIX Security Symposium
is sponsored by USENIX.

. o let can be protected with an optional password; a feature unique to the Yul =
CVE-2019-18671 Learn more at National Vulnerability Database (NVD) CVE-2021-31 | re unique fothe
- - - - \ ~/- password (OTP) code generators. The issue may allow an individual in physic
e CVSS Severity Rating e Fix Information e Vulnerable Software Versions ¢ SCAP remove the password protection of the OATH applet and view the TOTP/HOTP

Mappings ¢ CPE Information

Insufficient checks in the USB packet handling of the ShapeShift KeepKey hardware wallet before firmware
6.2.2 allow out-of-bounds writes in the .bss segment via crafted messages. The vulnerability could allow code
execution or other forms of impact. It can be triggered by unauthenticated attackers and the interface is
reachable via WebUSB.

companion Yubico Authenticator app, without knowing the password.
Description

Insufficient length checks in the ShapeShift KeepKey hardware wallet firm:
buffer overflow via crafted messages. The overflow in ethereum_extractTh
can circumvent stack protections and lead to code execution. The vulnerat
over WebUSB.

Minerva: The curse of ECDSA nonces

Systematic analysis of lattice attacks on noisy leakage

Oy SecurityAdvisory 2015-04-14

. o~ Jén Janéar!, Vladimir Sedlaéek!?, Petr Svenda! and Marek Sys!
CVE-2018-6875 Learn more at National Vulnerability Database (NVD) N ’
e CVSS Severity Rating e Fix Information e Vulnerable Software Versions ¢ SCAP Mappings Trackjng IDs: YSA-2015-1 and CVE-2015-3298. 2 Ca Foscari Univarsity of Venice

. {jo8ny, vlada.sedlacek}@mail .muni.cz; {svenda, syso}@fi.muni.cz
e CPE Information
Abstract. We present our discovery’ of a group of side-channel vulnerabilities in imple-

- - mentations of the ECDSA signature algorithm in a widely used Atmel AT90SC FIPS
Desc rl ptlon 140-2 certified smartcard chip and five cryptographic libraries (libgerypt, wolfSSL,
MatrixSSL, SunEC/OpenJDK/Oracle JDK, Crypto++). Vulnerable implementations

. g leak the bit-length of the scalar used in scalar multiplication via timing. Using leaked
Format String vulnerability in KeepKey version 4.0.0 allows attackers to trigger information display (of S umma ry bit-length, we mouat & Tattice attack on & 256-bit curve, afier observing enough
signing operations. We propose two new methods to recover the full private key

infOl'matiOn that ShOUId nOt be aCCGSSIbIe), relatEd tO teXt Contalning CharaCterS that the deVice'S fOI"It |aCkS. }'fquiringjust 50_0ﬂs<i§rﬂla"tures for. Sim"uli‘it?d leakage data, 1200 for real cryptographic

Goal: HSMs without security vulnerabilities

Rule out hardware, software, and timing side-channel vulnerabilities

Threat model

Powerful adversary that gains control of host machine
Full control over |/O interface to HSM
Physical attacks and other side channels: out of scope

Approach: formal verification

Covers security and timing channels Specification

Implementation KNOX v OK/

Includes hardware and software Software (.c) X FAIL
Hardware (.v)

Low proof overhead

Related work

Knox is the first to verify correctness and security of hardware and software

Including timing side channels

Hardware/software co-verification: Bedrock2 [PLDI'21], CakeML [PLDI'19]

Focused on correctness, not security

Application security verification: Ironclad Apps [OSDI'14]

Doesn't cover hardware or side channels

Contributions

Information-preserving refinement (IPR), a new security definition
Knox framework for verifying HSMs using IPR

Case studies: built and verified 3 simple HSMs

PIN-protected backup HSM
Password-hashing HSM
TOTP token

Approach rules out hardware bugs, software bugs, and timing side channels

Example: PIN-protected backup HSM

var bad_guesses = 0, secret = 0, pin = Functional specification

def store(new_secret, new_pin):
secret = new_secret Describes input-output behavior
pln = new_pln
bad_guesses = No notion of timing

def retrieve(guess):
1T bad_guesses >=

return

1f guess != pin:
bad_guesses = bad_guesses +
return

bad_guesses =
return secret

Implementation

Implementation includes hardware/software

CPU

Code that runs on it
Peripherals
Persistent memory

Interface: wires

Read output wires ==
Write input wires
Walit for a cycle

| ROM
(C code)
CPU T RAM
| FRAM
(durable)
—
UART
| 4 | 4
v | v |

tx rx rts cts

How to relate implementation to spec?

Want to capture:

(1) Functional correctness: implementation implements spec
(2) Non-leakage: Wire-level interface leaks no more than spec
Including timing, e.g., PIN comparison with strcmp()

Implementation is at the level of wires

Specification is at the level of functions (has no notion of wires)

10

Defined as indistinguishability
between a real and an ideal world

Inspired by formalization of zero
knowledge in cryptography

Information-preserving refinement (IPR)

Incomparable interfaces

physical */ * functional

interface

i)
A

interface
fn()
A

Physical
Implementation

\4

A\

Functional
Specification

11

real world

ideal world

Defined as indistinguishability
between a real and an ideal world

Inspired by formalization of zero
knowledge in cryptography

Interface adapters in each direction

functional
interface

Information-preserving refinement (IPR)

Matching interfaces

/

physical
interface

U

\

functional physical
interface interface

)
|

\4
Physical
Implementation

1

I

fn()
i
l

A

Functlonal
Specification

12

real world

ideal world

IPR: driver

Driver: translates spec-level operations
to wire-level I/0O

Like a device driver in an OS
Trusted, part of the specification

Captures functional correctness

13

(define (store secret pin)

(senc
(senc

(senc

(recv-

oyte #x02)
pytes pin)
pytes secret)

pyte))

(define (wait-until-clear-to-send)
(while (get-output 'rts))
(tick)))

(define (send-bit bit)
(set-1nput 'rx bit)
(for ([1 (in-range BAUD-RATE)])
(tick)))

(define (send-byte byte)
(wait-until-clear-to-send)
(send-bit #b0)

(for ([1 (in-range 8)])
(send-bit (extract-bit byte 1)))
(send-b1it #bl))

IPR: emulator

Emulator mimics wire-level behavior

Without direct access to secrets
With queries to spec-level operations

Proof artifact, constructed by developer
(jJust needs to exist)

Captures non-leakage

14

physical
interface

o
A

\4

Physical

physical
interface

I

A

\4

[Emu

ator]

1

fn()

Implementation

Functional
Specification

real world

ideal world

IPR rules out timing channels

What if circuit leaked info
through timing, e.g., strcmp()?

State =[PIN: 1337, Secret: 0x47...32]

Input: Il retrieve(pin=0000)
Emulator does not exist: can ciruit output LU

get return value using query to
retrieve(), but can't

reproduce timing behavior

.. ERR_BAD_GUESS

nput: 1]][J[J[] E retrieve(pin=1234)

Circuit Output: IR ERR_BAD_GUESS

< >
timing difference

15

IPR: emulator construction

Copy circuit, but replace operations on

physical

secret state with queries to spec interface

o
A

\4

Physical

Implementation
State = [PIN, Secret]

physical
interface
JTU1r
A
\/
[Emu ator]
Ifn()
Functional
Specification
State = [PIN, Secret]

real world

16

ideal world

IPR transfers security properties from spec to impl

Only reveals secret when correct PIN supplied V0" bad-guesses = 0, secret =0, pin =

def store(new_secret, new_pin):
Enforces guess limits secret = new_secret
pin = new_pin
bad_guesses =
Forgets old secret/pin when store() is called
def retrieve(guess):
1T bad_guesses >=

Doesn't leak past PIN guesses return
1f guess != pin:
bad_guesses = bad_guesses +
return

bad_guesses =
return secret

17

Knox framework

~ 3000 LOC on top of Rosette [PLDI'14] | Driver |
Functional -
Symbolically execute entire circuit + code >pecincation
Impl tati v OK/
. , , s ottware fc)on > Knox ™ % FAIL
Relies on human guidance through hints Hardware ()
[Hints]—»
1
[Emulator]

= Trusted

]
[] = Verified

18

Evaluation: case studies

3 simple HSMs, run on an FPGA

Hardware: minimal RISC-V CPU,

cryptographic accelerator, UART, ... HM Spec Driver HW SW Proof
core total

_ : : PIN-protected backup HSM 32 60 110 2670 190 470

Software: control logic, peripheral Password-hashing HSM 5 150 90 3020 240 650

drivers. HOTP. HMAC TOTP token 10 180 80 2950 360 830

Lines of code for case studies

Succinct specifications

Low proof overhead

19

Subtle bug involving persistence and timing

vold retrieve(uint8_t *guess) {

retrieve guess PIN = 0000, PIN = 0001, ...
v ; 1f (lconstant_time_cmp(&entry->pin, guess)) {

guess Is Correcy &uess IS Incorrect :
E entry->bad_guesses++;
' uart_write();

return,
bad_guesses = 07 : h

: entry->bad_guesses = 0;
v

.. force deVice reset
Adversary can't tell which branch was taken
(no outputs up to this point) but still, security bug! ¥
Resets guess count to 0.

\/
bad_guesses++
20

SoloKey: pattern similar to our bug

Other HSMs like OpenSK have more
robust code to avoid this issue

21

1int8

if (
{

}

else

{

}

Real implementations have similar code

ret == CTAP2_ERR_PIN_AUTH_INVALID)

ctap_decrement_pin_attempts();

if (ctap_device_boot_locked())

{
return CTAP2_ERR_PIN_AUTH_BLOCKED;

}
return CTAP2_ERR_PIN_AUTH_INVALID;

ctap_reset_pin_attempts();

t ret = verify_pin_auth_ex(CM->pinAuth, (u

Conclusion

Information-preserving refinement (IPR)

Implementation reveals no more information than specification

Knox framework

For verifying HSMs using IPR

Case studies
Built and verified 3 simple HSMs

anish.io/knox

22

