
Anish Athalye, M. Frans Kaashoek, Nickolai Zeldovich
MIT CSAIL

Verifying Hardware Security Modules
with Information-Preserving Refinement

1

HSMs: powerful tools for securing systems

Factor out core security operations

Provide security under host compromise

Many types of HSMs

U2F token

PKCS#11 HSM

Hardware wallet

iPhone Secure Enclave

Hundreds of millions of deployed HSMs

Web Browser
U2F Security Token

USB

(holds private key)

2

HSMs suffer from bugs

Hardware

Software

Timing side channels

33

Goal: HSMs without security vulnerabilities

Rule out hardware, software, and timing side-channel vulnerabilities

Threat model

Powerful adversary that gains control of host machine

Full control over I/O interface to HSM

Physical attacks and other side channels: out of scope

4

Approach: formal verification

5

"r;1bC1-ঞom

�lrѴ;l;m|-ঞom
"o[�-u;�Őĺ1ő
�-u7�-u;�Őĺ�ő

�uoo=

�mo� OK /
FAIL

�o�;uv�v;1�ub|��-m7�ঞlbm]�1_-mm;Ѵv

�m1Ѵ�7;v�_-u7�-u;�-m7�vo[�-u;

�o��ruoo=�o�;u_;-7

Related work

Knox is the first to verify correctness and security of hardware and software

Including timing side channels

Hardware/software co-verification: Bedrock2 [PLDI'21], CakeML [PLDI'19]

Focused on correctness, not security

Application security verification: Ironclad Apps [OSDI'14]

Doesn't cover hardware or side channels

6

Contributions

Information-preserving refinement (IPR), a new security definition

Knox framework for verifying HSMs using IPR

Case studies: built and verified 3 simple HSMs

PIN-protected backup HSM

Password-hashing HSM

TOTP token

Approach rules out hardware bugs, software bugs, and timing side channels

7

Functional specification

Describes input-output behavior

No notion of timing

Example: PIN-protected backup HSM

var bad_guesses = 0, secret = 0, pin = 0

def store(new_secret, new_pin):
 secret = new_secret
 pin = new_pin
 bad_guesses = 0

def retrieve(guess):
 if bad_guesses >= 10:
 return 'No more guesses'
 if guess != pin:
 bad_guesses = bad_guesses + 1
 return 'Incorrect PIN'
 bad_guesses = 0
 return secret

8

Implementation

CPU

ROM
(C code)

RAM

FRAM
(durable)

UART

tx rx rts cts

Implementation includes hardware/software

CPU

Code that runs on it

Peripherals

Persistent memory

...

Interface: wires

Read output wires

Write input wires

Wait for a cycle

9

How to relate implementation to spec?

Want to capture:

(1) Functional correctness: implementation implements spec

(2) Non-leakage: Wire-level interface leaks no more than spec

Including timing, e.g., PIN comparison with strcmp()

Implementation is at the level of wires

Specification is at the level of functions (has no notion of wires)

10

Incomparable interfaces

Information-preserving refinement (IPR)

Defined as indistinguishability
between a real and an ideal world

Inspired by formalization of zero
knowledge in cryptography

11

Physical
�lrѴ;l;m|-ঞom

physical
interface

u;-Ѵ��ouѴ7

�m1ঞom-Ѵ
"r;1bC1-ঞom

fn()

=�m1ঞom-Ѵ
interface

b7;-Ѵ��ouѴ7

Matching interfaces

Information-preserving refinement (IPR)

Defined as indistinguishability
between a real and an ideal world

Inspired by formalization of zero
knowledge in cryptography

Interface adapters in each direction

12

Physical
�lrѴ;l;m|-ঞom

Driver

physical
interface

u;-Ѵ��ouѴ7

fn()

=�m1ঞom-Ѵ
interface

�m1ঞom-Ѵ
"r;1bC1-ঞom

Emulator

fn()

=�m1ঞom-Ѵ
interface

b7;-Ѵ��ouѴ7

physical
interface

fn()ƹ

IPR: driver

Driver: translates spec-level operations
to wire-level I/O

Like a device driver in an OS

Trusted, part of the specification

Captures functional correctness

13

(define (store secret pin)
 (send-byte #x02) ; command number
 (send-bytes pin)
 (send-bytes secret)
 (recv-byte)) ; wait for ack

(define (wait-until-clear-to-send)
 (while (get-output 'rts))
 (tick))) ; wait a cycle

(define (send-bit bit)
 (set-input 'rx bit)
 (for ([i (in-range BAUD-RATE)])
 (tick)))

(define (send-byte byte)
 (wait-until-clear-to-send)
 (send-bit #b0) ; send start bit
 ;; send data bits
 (for ([i (in-range 8)])
 (send-bit (extract-bit byte i)))
 (send-bit #b1)) ; send stop bit

IPR: emulator

Emulator mimics wire-level behavior

Without direct access to secrets

With queries to spec-level operations

Proof artifact, constructed by developer
(just needs to exist)

Captures non-leakage

14

Physical
�lrѴ;l;m|-ঞom

Driver

physical
interface

u;-Ѵ��ouѴ7

fn()

=�m1ঞom-Ѵ
interface

�m1ঞom-Ѵ
"r;1bC1-ঞom

Emulator

fn()

=�m1ঞom-Ѵ
interface

b7;-Ѵ��ouѴ7

physical
interface

fn()ƹ

IPR rules out timing channels

What if circuit leaked info
through timing, e.g., strcmp()?

Emulator does not exist: can
get return value using query to
retrieve(), but can't
reproduce timing behavior

15

Input:

State = [PIN: 1337, Secret: 0x47...32]

Input:

Circuit Output:

Circuit Output:

retrieve(pin=0000)

retrieve(pin=1234)

... ERR_BAD_GUESS

...... ERR_BAD_GUESS

ঞlbm]�7b@;u;m1;

�l�Ѵ-|ou���|r�|Ĺ

IPR: emulator construction

Copy circuit, but replace operations on
secret state with queries to spec

16

Physical
�lrѴ;l;m|-ঞom

State = [PIN, Secret]

Driver

physical
interface

u;-Ѵ��ouѴ7

fn()

=�m1ঞom-Ѵ
interface

�m1ঞom-Ѵ
"r;1bC1-ঞom

State = [PIN, Secret]

Emulator

fn()

=�m1ঞom-Ѵ
interface

b7;-Ѵ��ouѴ7

physical
interface

ƹ fn()

IPR transfers security properties from spec to impl

Only reveals secret when correct PIN supplied

Enforces guess limits

Forgets old secret/pin when store() is called

Doesn't leak past PIN guesses

17

var bad_guesses = 0, secret = 0, pin = 0

def store(new_secret, new_pin):
 secret = new_secret
 pin = new_pin
 bad_guesses = 0

def retrieve(guess):
 if bad_guesses >= 10:
 return 'No more guesses'
 if guess != pin:
 bad_guesses = bad_guesses + 1
 return 'Incorrect PIN'
 bad_guesses = 0
 return secret

Knox framework

~ 3000 LOC on top of Rosette [PLDI'14]

Symbolically execute entire circuit + code

Relies on human guidance through hints

18

�m1ঞom-Ѵ
"r;1bC1-ঞom

�lrѴ;l;m|-ঞom
"o[�-u;�Őĺ1ő
�-u7�-u;�Őĺ�ő

�bm|v

	ub�;u

�mo� OK /
FAIL

�l�Ѵ-|ou

= Trusted
= Veri!ed

Evaluation: case studies

3 simple HSMs, run on an FPGA

Hardware: minimal RISC-V CPU,
cryptographic accelerator, UART, ...

Software: control logic, peripheral
drivers, HOTP, HMAC, ...

Succinct specifications

Low proof overhead

19

Lines of code for case studies

Subtle bug involving persistence and timing

20

void retrieve(uint8_t *guess) {
 // return error if PIN guess limit exceeded
 // ...

 // check PIN guess and update bad_guesses
 if (!constant_time_cmp(&entry->pin, guess)) {
 // entry points to persistent storage
 entry->bad_guesses++;
 uart_write(ERR_BAD_PIN);
 return;
 }
 entry->bad_guesses = 0;

 // output secret
 // ...
}

retrieve

guess is correct guess is incorrect

bad_guesses = 0

bad_guesses++

guess PIN = 0000, PIN = 0001, ...

force device reset
Adversary can't tell which branch was taken

(no outputs up to this point) but still, security bug!

Resets guess count to 0.

Real implementations have similar code

21

SoloKey: pattern similar to our bug

Other HSMs like OpenSK have more
robust code to avoid this issue

Conclusion

Information-preserving refinement (IPR)

Implementation reveals no more information than specification

Knox framework

For verifying HSMs using IPR

Case studies

Built and verified 3 simple HSMs

22

anish.io/knox

