
Notary: A Device for Secure

Transaction Approval

Anish Athalye Adam Belay Frans Kaashoek Robert Morris Nickolai Zeldovich

MIT CSAIL

1

How to securely approve transactions?

• Users perform sensitive transactional operations
• Bank transfers

• Cryptocurrency transactions

• Deleting backups

• Modifying DNS records

2

Common solution: smartphone apps

• Suffers from isolation bugs

(e.g. jailbreaks)

Approval agent on smartphone

3

Hardware wallets for transaction approval

TX

Sign(TX)

Display

Bu�ons

Ledger wallet

4

Challenge: wallets need to isolate agents

Ledger app store: 50+ third-party agents

5

Challenge: wallets need to isolate agents

Ledger app store: 50+ third-party agents

5

Problemswith existing hardware wallets

• OS bugs
• Over 10 found in Ledger and Trezor wallets

• Potential hardware bugs
• Shared hardware state could leak secrets (e.g. Spectre)

6

Contribution: Notary

• Agent separation architecture
• Reset-based switching

• Verified deterministic start

• Physical hardware wallet prototype

7

Threat model

• Some agents are malicious

• Physical attacks out of scope
• Could be addressed by tamper-proof hardware

8

Separation architecture provides isolation

Agent
SoC

Kernel
SoC

Runs third-party code
No OS, full access to hardware

Manages storage,
agent switching

User I/O Reset bu�on

Storage

uart

rstUSB

Notary separation architecture
9

Separation architecture provides isolation

Agent
SoC

Kernel
SoC

Runs third-party code
No OS, full access to hardware

Manages storage,
agent switching

User I/O Reset bu�on

Storage

uart

rstUSB

Kernel SoC
9

Separation architecture provides isolation

Agent
SoC

Kernel
SoC

Runs third-party code
No OS, full access to hardware

Manages storage,
agent switching

User I/O Reset bu�on

Storage

uart

rstUSB

Agent SoC
9

Separation architecture provides isolation

Agent
SoC

Kernel
SoC

Runs third-party code
No OS, full access to hardware

Manages storage,
agent switching

User I/O Reset bu�on

Storage

uart

rstUSB

Connected only by UART (and reset wire)
9

Separation architecture provides isolation

Agent
SoC

Kernel
SoC

Runs third-party code
No OS, full access to hardware

Manages storage,
agent switching

User I/O Reset bu�on

Storage

uart

rstUSB

Kernel resets Agent SoC
9

Separation architecture provides isolation

Agent
SoC

Kernel
SoC

Runs third-party code
No OS, full access to hardware

Manages storage,
agent switching

User I/O Reset bu�on

Storage

uart

rstUSB

launch(): load agent code + data
9

Separation architecture provides isolation

Agent
SoC

Kernel
SoC

Runs third-party code
No OS, full access to hardware

Manages storage,
agent switching

User I/O Reset bu�on

Storage

uart

rstUSB

Agent runs on Agent SoC, independently of Kernel SoC
9

Separation architecture provides isolation

Agent
SoC

Kernel
SoC

Runs third-party code
No OS, full access to hardware

Manages storage,
agent switching

User I/O Reset bu�on

Storage

uart

rstUSB

exit(state): save state and terminate
9

Desired property: noninterference

Agent A runs switch Agent B runs

�me

10

Desired property: noninterference

steal A's secrets?

Agent A runs switch Agent B runs

�me

10

Desired property: noninterference

steal A's secrets?

Agent A runs switch Agent B runs

�me

10

Deterministic start ensures noninterference

• Run before starting any agent

• Clears state in SoC (puts chip in deterministic state)

11

Deterministic start ensures noninterference

World 0 (secret = 0)

World 1 (secret = 1)

11

Deterministic start ensures noninterference

World 0 (secret = 0)

World 1 (secret = 1)

Agent A runs

11

Deterministic start ensures noninterference

World 0 (secret = 0)

World 1 (secret = 1)

Agent A runs Determinis�c start

11

Deterministic start ensures noninterference

World 0 (secret = 0)

World 1 (secret = 1)

Agent A runs Determinis�c start Agent B runs

11

Deterministic start ensures noninterference

Determinis�c start

11

Challenge: completeness

• Lots of state
• Registers

• Microarchitectural state: CPU caches, ...

• RAM

• SoC peripherals: UART, SPI, ...

• Must work for all states

12

Simple approaches fail

• Reset pin
• Clears minimal state necessary to restart

• Power cycling
• State takes minutes to decay (cold boot attacks)

13

Notary’s approach: use software

• Reset returns control

• Software in boot ROM can

clear internal state

• How to write this code?
• Must clear every single bit

of internal state

CPU
(PicoRV32)

ROM
(1 KB)

RAM
(128 KB)

UART UART GPIO SPI

clk rst
start code

(clears state)

14

Gate-level description captures all internal state

RTL (e.g. Verilog): all digital state is explicit

=⇒ SMT-compatible format

(for symbolic circuit simulation)

15

Verifying deterministic start for Notary’s SoC

16

Verifying deterministic start for Notary’s SoC

/* no reset code */

16

Verifying deterministic start for Notary’s SoC

/* no reset code */ error, state not cleared:

soc.cpu.latched_rd

16

Verifying deterministic start for Notary’s SoC

nop
nop
nop

16

Verifying deterministic start for Notary’s SoC

nop
nop
nop

error, state not cleared:

soc.cpu.cpuregs[1]

16

Verifying deterministic start for Notary’s SoC

nop
nop
nop

/* clear registers */
li x1, 0 /* ... */
li x31, 0

16

Verifying deterministic start for Notary’s SoC

nop
nop
nop

/* clear registers */
li x1, 0 /* ... */
li x31, 0

error, state not cleared:

soc.cpu.mem_wdata

16

Verifying deterministic start for Notary’s SoC

nop
nop
nop

/* clear registers */
li x1, 0 /* ... */
li x31, 0

/* clear buffer */
sw zero, 0(zero)

16

Verifying deterministic start for Notary’s SoC

nop
nop
nop

/* clear registers */
li x1, 0 /* ... */
li x31, 0

/* clear buffer */
sw zero, 0(zero)

error, state not cleared:

soc.ram.data[0]

16

Verifying deterministic start for Notary’s SoC

nop
nop
nop

/* clear registers */
li x1, 0 /* ... */
li x31, 0

/* clear buffer */
sw zero, 0(zero)

/* clear ram */
la t0, _sram_start
la t1, _sram_end

loop:
sw zero, 0(t0)
addi t0, t0, 4
bne t0, t1, loop

16

Verifying deterministic start for Notary’s SoC

nop
nop
nop

/* clear registers */
li x1, 0 /* ... */
li x31, 0

/* clear buffer */
sw zero, 0(zero)

/* clear ram */
la t0, _sram_start
la t1, _sram_end

loop:
sw zero, 0(t0)
addi t0, t0, 4
bne t0, t1, loop

error, state not cleared:

soc.uart.cr0

16

Verifying deterministic start for Notary’s SoC

nop
nop
nop

/* clear registers */
li x1, 0 /* ... */
li x31, 0

/* clear buffer */
sw zero, 0(zero)

/* clear ram */
la t0, _sram_start
la t1, _sram_end

loop:
sw zero, 0(t0)
addi t0, t0, 4
bne t0, t1, loop

/* clear uart control register */
la t0, _uart0
sw zero, 0(t0)

16

Verifying deterministic start for Notary’s SoC

nop
nop
nop

/* clear registers */
li x1, 0 /* ... */
li x31, 0

/* clear buffer */
sw zero, 0(zero)

/* clear ram */
la t0, _sram_start
la t1, _sram_end

loop:
sw zero, 0(t0)
addi t0, t0, 4
bne t0, t1, loop

/* clear uart control register */
la t0, _uart0
sw zero, 0(t0)

deterministic start verified!

n = 180342 cycles, < 10 ms
(mostly spent clearing RAM)

16

Notary hardware and system software

• Additional hardware: $8

(extra chips)

• TCB: 4000 LOC

(mostly drivers)

Notary prototype

17

Notary agent: Bitcoin

Bitcoin app (left) and agent (right)

18

Notary agent: web-app approval

Web app (left) and agent (right)

19

Evaluation summary: Notary is practical

Notary’s design prevents bugs

while preserving developer and user experience.

(see paper)

20

Relatedwork

• Non-wallet security devices [iOS enclave, Yubikey]

• Verified kernels [SeL4, Hyperkernel, Nickel, CertiKOS]

• Verified hardware [Kami, Hyperflow]

(see paper)

21

Conclusion

• Notary separation architecture
• Reset-based switching: clearing state between switching agents

• Verified deterministic start: ensuring state clearing is correct

• Notary prototype
• RISC-V-based prototype

• 2 agents: Bitcoin, web-app approval

anish.io/notary

22

https://www.anish.io/notary

