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Adversarial examples

Adversarial examples are inputs designed to fool a neural network.

Formalization often used: for a clean input x, an input x′ is an adversarial

example if it is misclassified and d(x, x′) < ε. For example:

adversarial

perturbation

88% tabby cat 99% guacamole

Threat models

A threat model is a formal statement describing assumed limitations on

an adversary. We consider defenses that claim to be secure under:

White-box: attacker has access to architecture and parameters

Adaptive adversary (Kerckhoff's Principle): attacker knows defense

Perturbation bound: limited perturbation in some distancemetric

We analyze each paper under the specific threat model it considers.

Obfuscated gradients

Gradient-based attacks cannot succeed without a gradient signal.

We identify three types of obfuscated gradients:

Shattered gradients are nonexistent gradients due to

non-differentiable operations;

Stochastic gradients depend on test-time randomness; and,

Vanishing/exploding gradients arise in very deep or recurrent

computation.

Defenses that cause obfuscated gradients appear to defeat iterative

optimization-based attacks, but defenses relying on this effect can be

circumvented using new techniques we develop.

Evaluating defenses

EvaluationGoal: show that the defense is secure under the threatmodel.

There is no test set for security. There are no fixed benchmarks.

The job of a security evaluation is not to show the defense is right, it is to

fail to show that the defense iswrong.

Red flags: signs of obfuscated gradients

We identify several characteristic behaviors of defenses that obfuscate

gradients. Such defensesmay beweak even though they appear to defeat

standard iterative attacks.

Single-step attacks outperform iterative attacks. Iterative attacks

like PGD should give strictly better performance than single-step

attacks like FGSM.

Black-box attacks outperformwhite-box attacks. The black-box

threat model is a strict subset of the white-box threat model, so

attacks in the white-box setting should perform better.

Attack success rate should be non-decreasing. With an increased

perturbation bound, attack success rate cannot decrease.

Unbounded attacks do not reach 100% success. With unbounded

distortion, any classifier should have 0% robustness.

Results vary widely between optimization-based attacks. All

gradient-based attacks should achieve roughly similar performance

with good parameter selection and enough iterations.

Random sampling finds adversarial examples. If brute-force random

search (e.g. sampling 105 points) within the feasible set finds

adversarial examples, the defense is likely obfuscating gradients.

Recommended practices

Some simple sanity checks can help identify weak defenses:

Usemany iterations of gradient descent. Number of gradient descent

steps is not a security parameter: use many (> 1000) steps of gradient

descent to ensure convergence.

Evaluate against the strongest attack. Only the worst-case

performance of a defense matters. Evaluate against the meta-attack

that tries many strong attacks and returns the best result.

Perform a transferability analysis. Transferability attacks are simple

to implement and can help catch defenses that subtly break standard

white-box attacks.

Evaluate gradient estimation attacks. Attacks based on gradient

estimation [3] can identify defenses that subtly break analytic gradient

computation.

Attacks

Obtaining auseful gradient is theprimary challenge in attacking adefense

that causesobfuscatedgradients. Onceweobtainauseful gradient signal,

we apply PGD [2], a standard white-box attack.

Backward Pass Differenঞable Approximaঞon (BPDA)

BPDAallows for attacking non-differentiable networks by approximating

the gradient of the non-differentiable layers. The gradient is estimated by

computing the forward pass normally but replacing a non-differentiable

layer f (·)with a differentiable approximationh(·) ≈ f (·) on the backward
pass.
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Expectaঞon Over Transformaঞon (EOT)

EOT [1] finds adversarial examples that are adversarial over a distribution

of transformations T , allowing for attacking defenses that employ ran-

domized input transformations for robustness. EOT solves the following

optimization problem:

arg max
x′

E
t∼T

[− log P (y | t(x′))]

subject to d(x, x′) < ε

EOT solves the optimization problem using gradient descent, noting that

∇Et∼T − log P (y | t(x)) = Et∼T ∇ − log P (y | t(x)) and approximating

with samples at each gradient descent step.

Reparameterizaঞon

Reparameterization allows for attacking networks that cause vanish-

ing/exploding gradients by performing a change of variables.

For a classifier f (g(x)) where g(x) causes vanishing/exploding gradients,
we make a change of variables x = h(z) for a differentiable function h(·)
such that g(h(z)) = h(z). With this, we can compute gradients through

f (h(z)) to attack the defense.

Case study: ICLR 2018 defenses

Non-obfuscated gradients

Adversarial Training (Madry et al.)
47%@0.031 `∞ on CIFAR-10

Cascade Adversarial Training (Na et al.)
15%@0.015 `∞ on CIFAR-10

Sha�ered gradients

Thermometer Encoding (Buckman et al.)
Circumvented using BPDA

Input Transformations (Guo et al.)
Circumvented using BPDA

Local Intrinsic Dimensionality (Ma et al.)
Circumvented using PGD and optimizing for confidence

Stochasঞc gradients

Stochastic Activation Pruning (Dhillon et al.)
Circumvented using PGD and using expectation of gradient

Mitigating through Randomization (Xie et al.)
Circumvented using EOT

Vanishing gradients

PixelDefend (Song et al.)
Circumvented using BPDA

Defense-GAN (Samangouei et al.)
Circumvented using reparameterization
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