Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples
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Adversarial examples are inputs designed to fool a neural network. Evaluation Goal: show that the defense is secure under the threat model. Obtaining auseful gradientis the primary challenge in attacking a defense Non-obfuscated gradients
Formalization often used: for a clean input x, an input x’ is an adversarial Thereis no test set for security. There are no fixed benchmarks. that causes obfuscated grad|ent5: Oncewe obtainauseful gradientsignal, , .
example if it is misclassified and d(x, x') < ¢. For example: we apply PGD | 2], a standard white-box attack. = Adversarial Training (Madry et al.)

P ) | PIE, The job of a security evaluation is not to show the defense is right, it is to . . . . = 47% @ 0.031 ¢, on CIFAR-10

fail to show that the defense is wrong. Backward Pass Differentiable Approximation (BPDA) = Cascade Adversarial Training (Na et al.)
= 15% @0.015 ¢4, on CIFAR-10

BPDA allows for attacking non-differentiable networks by approximating

adversarial Red flags: signs of obfuscated gradients the gradient of the non-differentiable layers. The gradient is estimated by |
furbat o | computing the forward pass normally but replacing a non-differentiable Shattered gradients
perturbation We identify several characteristic behaviors of defenses that obfuscate ayer f(-) with a differentiable approximation h(-) = f(-) on the backward |
oradients. Such defenses may be weak even though they appear to defeat hass. = Thermometer Encoding (Buckmanet al.)

= Circumvented using BPDA
= |nput Transformations (Guo et al.)

standard iterative attacks.

@) @) . .
58% tabby cat 79% guacamole = Single-step attacks outperform iterative attacks. Iterative attacks P * Circumvented using BPDA
- ot - X = > > Ply|x) « Local Intrinsic Dimensionality (Ma et al.)
ike PGD should give strictly better performance than single-step occ:a 1 rmsg 'meg‘é'[gmad' Yy AVid € fa -
! : = Circumvented using and optimizing for confidence
Threat models attacks like FGSM.
= Black-box attacks outperform white-box attacks. The black-box Stochast dient
A threat model is a formal statement describing assumed limitations on threat model is a strict subset of the white-box threat model, so Ochastc sradients
, . . | . . . VX <= < <+ P(y|x)
an adversary. We consider defenses that claim to be secure under: attacks in the white-box setting should perform better. = Stochastic Activation Pruning (Dhillon et al.)
. | | = Attack success rate should be non-decreasing. With an increased = Circumvented using PGD and using expectation of gradient

" White-box: attacker has access to architecture and parameters perturbation bound, attack success rate cannot decrease. = Mitigating through Randomization (Xie et al.)

= Adaptive adversary (Kerckhoff's Principle): attacker knows defense « Unbounded attacks do not reach 100% success With unbounded Expectation Over Transformation (EOT) » Circumvented using EOT

* Perturbation bound: limited perturbation in some distance metric distortion, any classifier should have 0% robustness. FOT [1]finds adversarial examples that are adversarial over adistribution o .

. . . = Results vary widely between optimization-based attacks. All of transformations 7', allowing for attacking defenses that employ ran- Vanishing gradients

VWe analyze each paper under the specific threat model it considers. osradient-based attacks should achieve roughly similar performance domized input transformations for robustness. EOT solves the following . PixelDefend (Sone et al.

with good parameter selection and enough iterations. optimization problem: = Circumventec usifg 5PDA
Obfuscated gradients = Random sampling finds adversarial examples. If brute-force random / » Defense-GAN (Samangouei et al.)
| | | | search (e.g. sampling 10° points) within the feasible set finds arg max "ZT —log P (y | t(x'))] = Circumvented using reparameterization
Gradient-based attacks cannot succeed without a gradient signal. adversarial examples, the defense is likely obfuscating eradients. X/ -

: /
We identify three types of obfuscated gradients: subject to d(x, x) < €
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we make a change of variables x = h(z) for a differentiable function A(-)
such that g(h(z)) = h(z). With this, we can compute gradients through
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that tries many strong attacks and returns the best result.

= Perform a transferability analysis. Transferability attacks are simple
to Implement and can help catch defenses that subtly break standara
white-box attacks.

= Evaluate gradient estimation attacks. Attacks based on gradient
estimation [3] can identify defenses that subtly break analytic gradient
computation.




