Modular Verification of Secure and Leakage-Free Systems:

From Application Specification to Circuit-Level Implementation

Anish Athalyel, Henry Corrigan-Gibbs1, M. Frans Kaashoek1, Joseph Tassarotti2, Nickolai Zeldovicht

TMIT CSAIL 2 New York University

Problem: bugs across the software and hardware stack

Software bugs
Hardware bugs

Timing side channels

Problem: bugs across the software and hardware stack

STM32F303xB/C

CVE-2019-18672 Lecarn more

e CVSS Severity

Description of device errata

2.2.2

Software bugs

Description

If the CPU writes to an address A in the SRAM memory and immediately (the cycle after)
reads an address B in the SRAM memory, while B = A+0x4000, the read operation will
return the content at address A instead of the content of address B.

Hardware bugs

<> Code () Issues 37 {9 Pull requests 6

Data Read when the CPU accesses successively SRAM address “A”
and SRAM address “A + offset of 16 KBytes (0x4000)”

& Nitrokey / nitrokey-pro-firmware ' Public

Mappings ¢ CPE

Description

Insufficient checks in the finite state machine o
6.2.2 allow a partial reset of cryptographic secr
breaks the security of U2F for new server regisi
vulnerability can be exploited by unauthenticat

Security advisory YSA-2018-01 -
Security issue with password pro
applet on YubiKey NEO

& Watch 16 ~

(® Actions] Projects

Published date: 2018-01-16

T| min g Si d eC h dalnne I S Fix off by one error in OTP slot range check s = vsazo1s.01

Ial VG- szszszsz merged 1 commit into Nitrokey:master from FlorianUekermani Su mmary

CVE-2019-18671 Learn more at National Vulnerability Database (NVD)
e CVSS Severity Rating e Fix Information e Vulnerable Software Versions ¢ SCAP
Mappings ¢ CPE Information

Insufficient checks in the USB packet handling of the ShapeShift KeepKey hardware wallet before firmware
6.2.2 allow out-of-bounds writes in the .bss segment via crafted messages. The vulnerability could allow code
execution or other forms of impact. It can be triggered by unauthenticated attackers and the interface is
reachable via WebUSB.

CVE-2018-6875 Learn more at National Vulnerability Database (NVD)
e CVSS Severity Rating e Fix Information e Vulnerable Software Versions ¢ SCAP Mappings
e CPE Information

Format String vulnerability in KeepKey version 4.0.0 allows attackers to trigger information display (of
information that should not be accessible), related to text containing characters that the device's font lacks.

Oscar Mira and Roi Martin from the Schibsted security team informed us of a se
Open Authentication) applet on the YubiKey NEO. The YubiKey OATH appletis |

m password (TOTP) and HMAC-based one-time password (HOTP) codes that are t
Authenticator app. To provide an extra layer of protection against unauthorize

password (OTP) code generators. The issue may allow an individual in physicas
remove the password protection of the OATH applet and view the TOTP/HOTP

companion Yubico Authenticator app, without knowing the password.
Description

Insufficient length checks in the ShapeShift KeepKey hardware wallet firm:
buffer overflow via crafted messages. The overflow in ethereum_extractTh
can circumvent stack protections and lead to code execution. The vulnerat
over WebUSB.

SecurityAdvisory 2015-04-14

Tracking IDs: YSA-2015-1 and CVE-2015-3298.

Summary

TPM-FaiL: TPM meets Timing and Lattice Attacks

CVE_ 20 2 1 _3 1 applet can be protected with an optional password; a feature unique to the Yul =

g .’:_ - T

3 L JORRERGAIAEE

usenix N
4 THE ADVANCED N
' COMPUTING SYSTEMS

ASSOCIATION

Daniel Moghimi and Berk Sunar, Worcester Polytechnic Institute,
Worcester, MA, USA; Thomas Eisenbarth, University of Liibeck, Liibeck,
Germany; Nadia Heninger, University of California, San Diego, CA, USA

https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm

This paper is included in the Proceedings of the
29th USENIX Security Symposium.
August 12-14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium
is sponsored by USENIX.

Minerva: The curse of ECDSA nonces

Systematic analysis of lattice attacks on noisy leakage
of bit-length of ECDSA nonces

Jén Janéar!, Vladimir Sedlaéek!?, Petr Svenda! and Marek Sys!

! Masaryk University,
2 Ca’ Foscari University of Venice
{jo8ny, vlada.sedlacek}@mail .muni.cz; {svenda, syso}@fi.muni.cz

Abstract. We present our discovery’ of a group of side-channel vulnerabilities in imple-
mentations of the ECDSA signature algorithm in a widely used Atmel AT90SC FIPS
140-2 certified smartcard chip and five cryptographic libraries (libgerypt, wolfSSL,
MatrixSSL, SunEC/OpenJDK/Oracle JDK, Crypto++). Vulnerable implementations
leak the bit-length of the scalar used in scalar multiplication via timing. Using leaked
bit-length, we mount a lattice attack on a 256-bit curve, after observing enough
signing operations. We propose two new methods to recover the full private key
requiring just 500 signatures for simulated leakage data, 1200 for real cryptographic

Bugs across the stack: timing

Bugs across the stack: timing

Non-constant-time code

bool check(char *password, char *guess) {
for (int 1 = 0; 1 < PW_LEN; 1++) {
1f (password[1] != guess[1i]) {
return false;
¥
5

return true;

¥

Bugs across the stack: timing

Non-constant-time code

bool check(char *password, char *guess) {
bool eq = true;

Compiler-introduced timing issues for (int i = 0: i < PW_LEN: i+4) {
eq &= (password[1] == guess[1]);
}
return eq;

¥

Bugs across the stack: timing

Non-constant-time code

Compiler-introduced timing issues

ct 2024

bool check(char *password, char *guess) {

bool eq = true;
for (int 1

O; 1 < PW_LEN; 1++) {

eq &= (password[1] == guess[1]);

¥

return eq;

Breaking Bad: How
Compilers Break Constant-Time Implementations

Moritz Schneider

Daniele Lain Ivan Puddu

Nicolas Dutly Srdjan (vlapkun

ETH Zurich ETH Zurich ETH Zurich ETH Zurich ETH Zurich

Abstract—The implementations of most hardened crypto-
graphic libraries use defensive programming techniques for side-
channel resistance. These techniques are usually specified as
guidelines to developers on specific code patterns to use or avoid.
Examples include performing arithmetic operations to choose
between two variables instead of executing a secret-dependent
branch. However, such techniques are only meaningful if they
persist across compilation. In this paper, we investigate how
optimizations used by modern compilers break the protections in-

be deployed everywhere, leaving less vetted architectures as
second-class citizens in terms of security and hence potentially
more susceptible to attacks. A solution to this problem is
to compile the portable source code of security-critical
libraries with special compilers that automatically remove
side channels [12], [38]. However, these compilers suffer from

a set of shortcomings: support for processor architectures is
noor thev miocht reaitire evynert knowledoe (e o to annhotfate

Bugs across the stack: timing

Non-constant-time code
Compiler-introduced timing issues

Microarchitectural side channels

2019 IEEE Symposium on Security and Privacy

Spectre Attacks: Exploiting Speculative Execution

Paul Kocher!, Jann Horn?, Anders Fogh3, Daniel Genkin?,
Daniel Gruss®, Werner Haas®, Mike Hamburg7, Moritz Lipp5,

Stefan Mangard®, Thomas Prescher®, Michael Schwarz®, Yuval Yarom

8

! Independent (www.paulkocher.com), 2 Google Project Zero,
3 G DATA Advanced Analytics, 4 University of Pennsylvania and University of Mar Meltdown: Reading Kernel Memory from User Space
® Graz University of Technology, ¢ Cyberus Technology,
7 Rambus, Cryptography Research Division, 8 University of Adelaide and Data6

Abstract—Modern processors use branch prediction and spec-
ulative execution to maximize performance. For example, if the
destination of a branch depends on a memory value that is in the
process of being read, CPUs will try to guess the destination and
attempt to execute ahead. When the memory value finally arrives,
the CPU either discards or commits the speculative computation.
Speculative logic is unfaithful in how it executes, can access the
victim’s memory and registers, and can perform operations with
me hlo cida offo

Moritz Lippl, Michael Schwarz!, Daniel Gruss!, Thomas Prescher?,

2 3 4 1
leverage hardware vulnerabilities to leak s Werner Haas®, Anders Fogh”, Jann Horn®, Stefan Mangard’,

Attacks of the latter type include micro: P?ul Kocher’, Daniel Genkin®®, Yuval Yarom’, Mike Hamburg8
exploiting cache timing [8, 30, 48, 52, . Graz University of Technology, >*Cyberus Technology GmbH,
prediction history [1, 2], branch target buf 3G-Data Advanced Analytics, *Google Project Zero,

DRAM rows [56]. Software-based techni 3 Independent (www.paulkocher.com), ®University of Michigan,

used to mount fault attacks that alter phys TUniversity of Adelaide & Data61, 8Rambus, Cryptography Research Division

internal CPU values [65].

sor bit of the processor that defines whether a memory
page of the kernel can be accessed or not. The basic

Cac h e B Ieed : A Ti m i n g Attac k o n 0 pe n ss L eszn:'zﬂgersd:: idea is that this bit can only be set when entering kernel

code and it is cleared when switching to user processes.
ected from user

C n t nt T' RS A Meltd This hardware feature allows operating systems to map
o s a Ime pwn. Meltdown o yernel into the address space of every process and

cution on mod-
emory locations
Out-of-order

to have very efficient transitions from the user process
to the kernel, e.g., for interrupt handling. Consequently,

Yuval Yarom Daniel Gen kin N adi P2 | Heni nger I.me feature and in practice, there is no change of the memory mapping
The University of Technion and Tel Aviv University of

Adelaide and NICTA

Overview

whan curitrhina fram a ncer nracacc tn the lrarnal

University Pennsylvania

2015 IEEE Symposium on Security and Privacy

CacheBleed is a side-channel attack that exploits inform _ ¥ _

Intel processors. By detecting cache-bank conflicts via m LaSt LeVel CaChe Slde Channel AttaCkS arc
recover information about victim processes running on th .

recover both 2048-bit and 4096-bit RSA secret keys fromr PraCtlcal

Bridge processors after observing only 16,000 secret-ke)

is despite the fact that OpenSSL's RSA implementation v

in order to protect against cache-based (and other) side-

Fangfei Liu*", Yuval Yarom**®, Qian Ge®l, Gernot Heiser’1, Ruby B. Lee’
* Equal contribution joint first authors.
T Department of Electrical Engineering, Princeton University
Email: {fangfeil,rblee}@princeton.edu
¥ School of Computer Science, The University of Adelaide
Email: yval@cs.adelaide.edu.au
3 NICTA
Email: {qgian.ge,gernot} @nicta.com.au
T UNSW Australia

Abstract—We present an effective implementation of cTTomms et

Goal: eliminate bugs across the stack

Systematic approach to rule out a large class of bugs in software and hardware;
Correctness bugs
Security bugs

Timing side-channel leakage

u.LIILUﬂ'_L 'I‘HL e
finv(zinv, pz);
fmul(res, px, zinv);
from_mont(res, res);

}

static void point_double(uint64_t xres, uint64_t *p)

{

Approach: formal verification b

uint64_t *x3 = res;
uintée4_t xy3 = res + 4U;
uint64_t *xz3 = res + 8U;
uint64_t xt@ = tmp;
uint64_t xtl = tmp + 4U;

uint64_t xt2 = tmp + 8U;
uint64_t xt3 = tmp + 12U;
uint64_t xt4 = tmp + 16U;
uint64_t *xx1 = p;
uint64_t xy = p + 4U;
uint64_t xz1 = p + 8U;
fsqr(to, x1);

fsqr(tl, y);
fsqr(t2, zl1);
fmul(t3, x1, y);
fadd(t3, t3, t3);

= hash(msg)
= rand()

L — IPR

= kA-1 * (h + p * r) mod n

FLASH

System-on-a-Chip (SoC)

return (r, s)

Mathematical specification Entire hardware/software system
~ 100 LoC ~ 10,000 LoC

u_LIIL.U?_L 'I‘PL P
finv(zinv, pz);
fmul(res, px, zinv);
from_mont(res, res);

}

static void point_double(uint64_t xres, uint64_t *p)

{

Approach: formal verification N

uint64_t *x3 = res;

uint64_t xy3 = res + 4U;
uint64_t *xz3 = res + 8U;
uint64_t xt@ = tmp;

uint64_t xtl = tmp + 4U;
uint64_t xt2 = tmp + 8U;
uint64_t xt3 = tmp + 12U;
uint64_t xt4 = tmp + 16U;

Information-Preserving Refinement: intsit 5L
fsqr(te, xl?; '

captures correctness, security, and non-leakage e, s
fadgth: é%: ¥3§;

= hash(msg)
= rand()

L — IPR

= kA-1 * (h + p * r) mod n

FLASH

System-on-a-Chip (SoC)

return (r, s)

Mathematical specification Entire hardware/software system

Approach: formal verification
NN

CPU ROM

= hash(msg)
= rand()
=k * G

]
—IPR | =
= kA-1 * Ch +p * r) mod n LT

System-on-a-Chip (SoC)

/0 RAM

return (r, s)

Mathematical specification Entire hardware/software system

Approach: formal verification
NN

CPU ROM

= hash(msg)
= rand()
=k * G

]
—IPR | =
= kA-1 * Ch +p * r) mod n LT

System-on-a-Chip (SoC)
proof
\v/

/0 RAM

return (r, s)

Mathematical specification Entire hardware/software system

Verification
tool

I
9/ X

Challenge 1: gap between specification and implementation

= hash(msg)
= rand()
Huge gap between mathematical Kk kG
specification and circuit-level = R.x
implementation = kA-1 % (h +p * r)mod n

return (r, s)

Software: optimized code for crypto

RN
Hardware: pipelined processor - ROM

Ve RAM

FLASH

System-on-a-Chip (SoC)

10

Solution: proof modularity using transitive IPR

Break down the proof into more manageable pieces
Formalized and proved transitivity of IPR

Separate reasoning about software, compilation, and hardware

hash(msg)

rand()

K * G

R. X

kA-1 * (h + p * r) mod n

return (r, s)

cpPU | ROM

/0 RAM

Asm

|
O
|

FLASH

NERERRE
System-on-a-Chip

N
K
R
r
S

11

Challenge 2: different ways of thinking about equivalences

Prior work has looked at connecting
specs to C, C to Asm, ...

Different ways of thinking about
equivalences, that capture different Compiler correctness

properties
Noninterference

Constant-time

12

Solution: IPR as a common framework

IPR as the consistent way to think about
equivalences across levels of abstraction

Lift existing proofs to IPR where possible
Software, compilers
Introduce new technigues otherwise

Hardware

13

IPR proof
A verified lifting
pre/post-condition style proof

IPR proof
A verified lifting

compiler correctness

Contributions

Transitive IPR: scaling proofs of IPR with modularity

Proof techniques for IPR: proving IPR across the software/hardware stack
Parfait verification framework: implements these techniques

Application of Parfait to Hardware Security Modules (HSMs):

Including an ECDSA-signing HSM (2,300 LoC and 13,500 lines of Verilog)
verified against a 40 LoC spec (on top of specs from HACLY)

anish.io/parfait

14

http://anish.io/parfait

Context: hardware security modules (HSMs)

Factor out core security-critical functionality
to a separate device

Billions of deployed HSMSs: u2F token, iPhone Let's Encrypt
Secure Enclave, PKCS#11 HSM, Apple Cloud Key Vault, ... Boulder CA

I request signature -
> } T N,
get signed cert i T

4 . P g Al

(holds encryption keys)

Certificate-signing HSM

15

Information-Preserving Refinement (IPR) Knox, OSDI'22]

var prf_key, prf_counter, private_key

def initialize(new_prf_key, new_private_key):
prf_key = new_prf_key
prf_counter = 0
private_key = new_private_key

sign(message):
1f prf_counter == 2/A64 - 1: FLASH

return Error
nonce = hmac_sha256(prf_key, prf_counter) ‘ ‘ ‘ ‘ ‘ ‘

prf_counter += 1 System-on-a-Chi
return ecdsa_p256(message, private_key, nonce) y

ECDSA signing HSM spec Entire hardware/software system
~ 40 LoC ~ 15,000 LoC

16

Information-Preserving Refinement (IPR)

var prf_key, prf_counter, private_key

def initialize(new_prf_key, new_private_key):
prf_key = new_prf_key
prf_counter = 0
private_key = new_private_key

sign(message):

1f prf_counter == 2A64 - 1:
return Error

nonce = hmac_sha256(prf_key, prf_counter) ‘ ‘ ‘ ‘ ‘ ‘

prf_counter += 1 System-on-a-C
return ecdsa_p256(message, private_key, nonce) y

FLASH

ASY \anina HSM cng ativa bardware/software system
Specification
Interaction model: whole-command state machine,

only observables are function calls and return values
(no notion of timing)

16

Information-Preserving Refinement (IPR) Knox, OSDI'22]

var prf_key, prf_counter, private_key

def initialize(new_prf_key, new_private_key):
prf_key = new_prf_key
prf_counter = 0
private_key = new_private_key

sign(message):
1f prf_counter == 2/A64 - 1: FLASH

return Error
nonce = hmac_sha256(prf_key, prf_counter) ‘ ‘ ‘ ‘ ‘ ‘

prf_counter += 1 System-on-a-Chi
return ecdsa_p256(message, private_key, nonce) y

ECDSA signing H
~ 40 LoC
Implementation

interaction model: cycle-precise digital wire-level I/0

Information-Preserving Refinement (IPR) Knox, OSDI'22]

var prf_key, prf_counter, private_key

def initialize(new_prf_key, new_private_key):
prf_key = new_prf_key
prf_counter = 0
private_key = new_private_key

sign(message):
1f prf_counter == 2/A64 - 1: FLASH

return Error
nonce = hmac_sha256(prf_key, prf_counter) ‘ ‘ ‘ ‘ ‘ ‘

prf_counter += 1 System-on-a-Chi
return ecdsa_p256(message, private_key, nonce) y

ECDSA signing HSM spec Entire hardware/software system
~ 40 LoC ~ 15,000 LoC

16

Information-Preserving Refinement (IPR) Knox, OSDI'22]

ldeal World

fnC) JL

1Fn()
ECDSA HSM Spec

17

Fn()

L
Drlver J

CPU | ROM

/0 RAM

FLASH
BN

System-on-a-Chip

Real World

Information-Preserving Refinement (IPR) Knox, OSDI'22]

ldeal World

fnC) JL

1Fn()
ECDSA HSM Spec

Circuit implements spec, and it doesn't leak any additional
information through its cycle-precise wire-level behavior

Fn()

L
Drlver J

CPU | ROM

/0 RAM

FLASH
BN

System-on-a-Chip

Real World

Captures correctness and security

Information-Preserving Refinement (IPR)
fnO Jor

Key intuition of how IPR captures timing:

(1) model spec as a whole-command state machine,
(2) model implementation at the cycle-precise level, and
(3) show that we can exactly reproduce the implementation's
timing behavior given access only to the spec

17

HSM structure

/0 d - u1nt8 _t cmd[COMMAND SIZE .

(IO and persistence) Jint8_t resp[RESPONSE_SIZE]:
Written by platform void main() {
developer while (1) 4

read_command(&cmd); // from I/0 interface
. . . C load_state(&state); // from persistent memory
Core appllcatlon |OgIC (tlmmg' handle(&state, &cmd, &resp); // core computation

sensitive application code) store_state(&state); // to persistent memory, atomic
write_response(&resp); // to I/0 interface

Written by application s

developer }

18

Parfait developer workflow: implementation

Parfait developer workflow: implementation

App Spec

[F*] 3

app developer

Parfait developer workflow: implementation

App Spec App Impl
[F*] 3 [Low*]

app developer

Parfait developer workflow: implementation

App Spec
[F*]

app developer

App Impl
[Low*]

KaRaMelL

| App Impl

[C]

CompCert

| App Impl

[Asm]

Parfait developer workflow: implementation

App Spec
[F*]

&

app developer

App Impl
[Low*]

KaRaMeL

| App Impl

[C]

CompCert

| App Impl

[Asm]

System Software
[C/Asm]

19

3 &

platform developer

Parfait developer workflow: implementation

App Spec
[F*]

&

app developer

App Impl
[Low*]

KaRaMeL

| App Impl

[C]

CompCert

| App Impl

GCC

[Asm]

[C/Asm]

System Software

19

3 &

» Firmware

[Binary]

platform developer

Parfait developer workflow: implementation

App Spec
[F*]

&

app developer

App Impl
[Low*]

KaRaMeL

| App Impl

[C]

CompCert | App Impl Gec | Firmware
[Asm] [Binary]
System Software Hardware

[C/Asm] [Verilog]

19

3 &

platform developer

Parfait developer workflow: implementation

App Spec
[F*]

&

app developer

App Impl
[Low*]

KaRaMeL

| App Impl

[C]

CompCert

| App Impl GCC

[Asm]

Firmware

Yosys X

[Binary]

System Software

[C/Asm]

3 &

19

Hardware
[Verilog]

platform developer

cPU | ROM

/10 || RAM

FLASH

System-on-a-

Chip (SoC)

Parfait developer workflow: proofs

App Spec
[F*]

&

app developer

App Impl
[Low*]

KaRaMeL

| App Impl

[C]

CompCert

| App Impl

GCC

[Asm]

System Software
[C/Asm]

20

Firmware
[Binary]

Yosys X

3 &

Hardware
[Verilog]

platform developer

L L]
cPU | ROM

/10 || RAM

FLASH
BERREER
System-on-a-

Chip (SoC)

Parfait developer workflow: proofs

proof

\—~ pre/postcondition reasoning

lockstep

app developer

KaRaMeL

Software verification

| App Impl

[C]

CompCert

| App Impl GCC

[Asm]

Firmware

Yosys X

[Binary]

System Software
[C/Asm]

3 &

20

Hardware
[Verilog]

platform developer

cPU | ROM

/10 || RAM

FLASH

System-on-a-

Chip (SoC)

Parfait developer workflow: proofs

proof

\—~ pre/postcondition reasoning

lockstep

app developer

KaRaMeL

Software verification

| App Impl

[C]

CompCert

proof

_~symbolic circuit simulation

functional-physical simulation

| App Impl

[Asm]

Firmware
[Binary]

System Software
[C/Asm]

3 &

20

Hardware
[Verilog]

platform developer

cPU | ROM

/10 || RAM

FLASH

System-on-a-

Chip (SoC)

Hardware verification

Parfait developer workflow: proofs

lockstep

app developer

KaRaMeL

Software verification

| App Impl

[C]

CompCert

functional-physical simulation

| App Impl

[Asm]

Firmware
[Binary]

System Software
[C/Asm]

3 &

20

Hardware
[Verilog]

platform developer

CPU | ROM

/0 | RAM

FLASH

System-on-a-

Chip (SoC)

Hardware verification

Parfait proof approach: modular verification with transitive IPR

app developer

KaRaMeL

Software verification

| App Impl

[C]

CompCert R

System Software
[C/Asm]

21

3 &

Firmware | Yosys |

[Binary] —|cPU | ROM
— 110 || RAM

Hardware —| FLASH

[Verilog]

platform developer

System-on-a-

Chip (SoC)

Hardware verification

Parfait proof approach: modular verification with transitive IPR

lockstep

app developer

KaRaMeL

Software verification

| App Impl

[C]

IPR
O
functional-physical simulation
CompCert | App Impl GeC | Firmware | Yosys AL
[Asm] [Binary] —|cPuU| ROM |—
1o | RAM |-
System Software Hardware | FLASH |C

[C/Asm]

21

3 &

[Verilog]

platform developer

BERREER
System-on-a-

Chip (SoC)

Hardware verification

Parfait proof approach: modular verification with transitive IPR

AN PR by transitivity

lockstep

app developer

KaRaMeL

Software verification

| App Impl

[C]

CompCert

| App Impl

functional-physical simulation

[Asm]

System Software
[C/Asm]

21

Firmware
[Binary]

3 &

Hardware
[Verilog]

platform developer

HEEEEEE
CPU | ROM

/0 | RAM

FLASH
BERREER
System-on-a-

Chip (SoC)

Hardware verification

Parfait proof approach: modular verification with transitive IPR

lockstep

app developer

KaRaMeL

Software verification

| App Impl

[C]

CompCert

O O O
functional-physical simulation
| App Impl |__ccc | Firmware | vosys | LLLLLLLL
[Asm] [Binary] —|cPuU| ROM |—
1o | RAM |-
System Software Hardware | FLASH |C

[C/Asm]

21

3 &

[Verilog]

platform developer

BERREER
System-on-a-

Chip (SoC)

Hardware verification

Parfait proof approach: modular verification with transitive IPR

IPR

E AN PR by transitivity E

: IPR IPR IPR IPR IPR IPR :

O=mmmmmmmmmmmmmm e O=mmmmmmmmmmmmmn OLLIOLEEELEEEEE R O==O==mmmmmmmmmmmm s mmm i mmmmm - O

lockstep functional-physical simulation

App Spec App Impl | kaRameL | App Impl | compCert | App Impl | acc | Firmware | vyosys | ALLELLLL
[F*] 3 [Low*] [C] [Asm] [Binary] —|cPu || ROM |—
app developer — /O RAM E
System Software Hardware | FLASH |C

C/Asm erilo [TTTTTT]
| | 1 [Verilog System-on-a-

platform developer Chip (SOC)

Software verification

21

Hardware verification

Parfait proof approach: modular verification with transitive IPR

IPR

E AN PR by transitivity E

: IPR IPR IPR IPR IPR IPR :

O=mmmmmmmmmmmmmm e O=mmmmmmmmmmmmmn OLLIOLEEELEEEEE R O O i O

lockstep functional-physical simulation

App Spec App Impl | kaRameL | App Impl | compCert | App Impl | acc | Firmware | vyosys | ALLELLLL
[F*] 3 [Low*] [C] [Asm] [Binary] —|cPu || ROM |—
app developer — /O RAM E
System Software Hardware | FLASH |C

C/Asm erilo [TTTTTT]
| | 1 [Verilog System-on-a-

platform developer Chip (SOC)

Software verification

21

Hardware verification

Parfait proof approach: modular verification with transitive IPR

IPR

E AN PR by transitivity :

' IPR IPR IPR IPR IPR IPR :

OLETEETEVEREPEEFETES OLETEEETETEEPETERE OLTIOTEREEEETEERETE O = mmmmm e e e O

’ﬂ IPR by lockstep 'ﬂ* IPR by equivalence 'ﬂ‘ IPR by equivalence 'ﬂ‘ IPR by functional-physical-simulation
lockstep functional-physical simulation

App Spec App Impl | karameL | App Impl | compCert | App Impl | acc | Firmware | Yosys | LJLLILLLL
[F*] 3 [Low*] [C] [Asm] [Binary] —|cPu| ROM |—
app developer —| VO | RAM E
System Software Hardware | FLASH |[—

C/Asm erilo RERERER
[| 1 verilog] System-on-a-

platform developer Chip (SOC)

Software verification

21

Hardware verification

Parfait proof approach: modular verification with transitive IPR

IPR

E AN PR by transitivity :

' IPR IPR IPR IPR IPR IPR :

OLETEETEVEREPEEFETES OLETEEETETEEPETERE OLTIOTEREEEETEERETE O = mmmmm e e e O

’ﬂ IPR by lockstep 'ﬂ* IPR by equivalence 'ﬂ‘ IPR by equivalence 'ﬂ‘ IPR by functional-physical-simulation
lockstep functional-physical simulation

App Spec App Impl | karameL | App Impl | compCert | App Impl | acc | Firmware | Yosys | LJLLILLLL
[F*] 3 [Low*] [C] [Asm] [Binary] —|cPu| ROM |—
app developer —| VO | RAM E
System Software Hardware | FLASH |[—

C/Asm erilo RERERER
[| 1 verilog] System-on-a-

platform developer Chip (SOC)

Software verification

21

Hardware verification

Benefits of the Parfait approach

IPR IPR IPR IPR IPR IPR
OLLT L EE TR P EET OLETEEETETEEPETERE OLTIOTEREEEEFEERETEE O = mmmmm e e e O
’ﬂ IPR by lockstep 'ﬂ* IPR by equivalence 'ﬂ‘ IPR by equivalence 'ﬂ‘ IPR by functional-physical-simulation
lockstep functional-physical simulation

App Spec App Impl | karameL | App Impl | _compcert | App Impl | ecc | Firmware | Yosys | LLLILLLL
[F*] 3 [Low*] [C] [Asm] [Binary] —|cPu| ROM |—
app developer —| VO | RAM E
System Software Hardware | FLASH |[—

[C/Asm] [Verilog] RERRRRE

Software verification

3 &

22

platform developer

System-on-a-

Chip (SoC)

Hardware verification

Benefits of the Parfait approach

; IPR IPR IPR IPR IPR IPR
OETEEEPETEPEPEEEEEY OECETEPEPEETEPEPE OLEIOLEETETEFEFTETED O = mmmmmmmmmmmm e O
x i x i ’_TT = = g\ﬁ =
y = ©, O, o, O, A
D o >' O o' = 8
ol — | cl Ql ol 0O > |
21 oy Tl E q L o
| O : X1 Ol : Ol &1 :) I : = |
| ﬂ IPR by lockstep c 'ﬂ IPR by equivalence Y 5' 'ﬂ‘ IPR by equivalence E' <UE) | ’ﬂ‘ IPR by functional-physical-simulation % |
| | ! = al Tl — |
| | 9 ol <1 Ty S
| | s 2 D1 £l e
| lockstep | equivalence | | equivalence cE> | | functional-physical simulation |
L TR T |
| . i | i i | | I | | n i |
App Spec App Impl | kaRameL | App Impl | compCert | App Impl | acc | Firmware | vyosys | ALLELLLL
[F*] [Low*] [C] [Asm] [Binary] —|cPU| ROM |—
app d —| 11O | RAM E
I FLASH |

Modular proofs: separate reasoning about software,

Software verification

compilation, and hardware

22

BERREER
System-on-a-

Chip (SoC)

Hardware verification

Benefits of the Parfait approach

E AN PR by transitivity :
I IPR IPR IPR IPR IPR IPR :
---------- Om=On=mmmmmmmmmmmeaQmrOmmmmmmmmmmmmmmm s e m e e ee e ()
Lift pre/post-conditions to IPR:
enables reusing HACL* specs,
implementation, and proof equivalence 'ﬂ‘IPR by equivalence ’ﬂ‘IPR by functional-physical-simulation
lockstep functional-physical simulation
App Spec App Impl | KaRaMeL | App Impl | cCompCert | App Impl | ccc | Firmware | yosys | ALl lLlLL
[F*] [Low*] [C] [Asm] [Binary] —|cPu| ROM |—
app d —| VO | RAM E
| FLASH [—

Modular proofs: separate reasoning about software, RRRERRR
System-on-a-
Chip (SoC)

compilation, and hardware

Software verification - Hardware verification

Benefits of the Parfait approach

E AN PR by transitivity :
: IPR IPR IPR IPR IPR IPR :
................................... O
Lift pre/post-conditions to IPR: _ _
Preb : * Lift compiler correctness to IPR:
enables reusing HACL* specs, .
_ _ enables reusing CompCert
|mplementat|on, and proof | ’ﬂ‘IPR by functional-physical-simulation
lockstep functional-physical simulation
App Spec App Impl | KaRaMeL | App Impl | cCompCert | App Impl | ccc | Firmware | yosys | ALl lLlLL
[F*] [Low] [C] [Asm] [Binary] — cPU| ROM |—
app d —| VO | RAM E
1 FLASH |

Modular proofs: separate reasoning about software, RRRERRR
System-on-a-
Chip (SoC)

compilation, and hardware

Software verification - Hardware verification

Benefits of the Parfait approach

|
: AN PR by transitivity
|
|

IPR IPR IPR IPR IPR IPR

Lift pre/post-conditions to IPR:
T Prerp N Lift compiler correctness to IPR: New techniques enable verifying

enables reusing CompCert unmodified off-the-shelf hardware

enables reusing HACL* specs,
Implementation, and proof

lockstep functional-physical simulation
App Spec App Impl | karameL | App Impl | _compcert | App Impl | ecc | Firmware | Yosys | LLLLLLLL
[F*] [Low*] [C] [Asm] [Binary] —|cPu || ROM |—
app d — vo | RAM |-
| FLASH |—

Modular proofs: separate reasoning about software, RRRERRR
System-on-a-
Chip (SoC)

compilation, and hardware

Software verification - Hardware verification

Benefits of the Parfait approach

IPR IPR IPR IPR IPR IPR
OLLT L EE TR P EET OLETEEETETEEPETERE OLTIOTEREEEEFEERETEE O = mmmmm e e e O
’ﬂ IPR by lockstep 'ﬂ* IPR by equivalence 'ﬂ‘ IPR by equivalence 'ﬂ‘ IPR by functional-physical-simulation
lockstep functional-physical simulation

App Spec App Impl | karameL | App Impl | _compcert | App Impl | ecc | Firmware | Yosys | LLLILLLL
[F*] 3 [Low*] [C] [Asm] [Binary] —|cPu| ROM |—
app developer —| VO | RAM E
System Software Hardware | FLASH |[—

[C/Asm] [Verilog] RERRRRE

Software verification

3 &

22

platform developer

System-on-a-

Chip (SoC)

Hardware verification

Implementation

IPR IPR IPR IPR IPR IPR

O mmmmmmmmmm e Ommmmmmmmemmemma O==Qm=mmmmmmmmemm == O m = m e e e e O

¥ X T gl 21 gl 5

lf 2 = 8 Sr 2 A

8 | — cl Ql ol 0O >9 |

21 oy Tl E q L o

| O : X1 Ol : Ol &1 :) I : = |

| ﬂ‘ IPR by lockstep c 'ﬂ IPR by equivalence Y 5' 'ﬂ‘ IPR by equivalence E' <UE) | ’ﬂ‘ IPR by functional-physical-simulation % |

| | ! = al T — |

| | 5, <, T, S

| | 1 Q) o, 2 e

| lockstep | equivalence | = | equivalence _ccé | | functional-physical simulation |

ot EEEEEEEE S [R L T EEE e il T EEEEEEEEEEEEEEEEEEEEEEEE T . |

| | | | a | | ! |
App Spec App Impl | kaRameL | App Impl | compCert | App Impl | acc | Firmware | vyosys | ALLELLLL
[F*] e [Low*] [C] [Asm] [Binary] —|cPU| ROM |—
app developer —| VO | RAM E
System Software Hardware | FLASH |[—

[C/Asm] [Verilog] RERRRRE

Software verification

3 &

23

platform developer

System-on-a-

Chip (SoC)

Hardware verification

Implementation

model FX

100 LoC

app developer

building on F* and Low*

KaRaMeL N

Software verification

--------------- O==O====mmmmmmmmmemcmcmc e mm e e == ()
£ @l
S 2 §|
oC
c S =
AMPR by equivalence Q) i, | A} IPR by functional-physical-simulation o |
e [E

n | o | — |

<, % | S

31 g g |

equivalence cE> | | functional-physical simulation |

FEE EE S S SESEE. i | | 1= S S S S S S S S S e . |

: | | v
App Impl | _compCert | App Impl | acc | Firmware | yosys | AL LLLL
[C] [Asm] [Binary] —|CPU|| ROM |—
/0 1| RAM [—
System Software Hardware | FLASH |[—

[C/Asm] [Verilog] RERRRRE
1 System-on-a-

platform developer Chip (SOC)

23

Hardware verification

Implementation

100 LoC
building on F* and Low*

model FX

y equivaleng

equivalence

: I I : : I I : : I
App Spec App Impl | KarameL | App Impl | compCert | App Impl gec | Firmware | yosys | LLLALLLL
[F*] l [Low*] [C] [Asm] [Binary] —|cPu || ROM |—
app developer — /O RAM E
System Software Hardware | FLASH |C

C/Asm erilo [TTTTTT]
| | 1 [Verilog System-on-a-

platform developer Chip (SOC)

Software verification 23 Hardware verification

Implementation

IPR
: IPR
O
L
G 100 LoC
= 'I building on F* and Low* 8,000 LoC of Racket
y equivalen: building on Rosette
equivalence
0 I | n i I I : 1 I
App Spec App Impl | kaRameL | App Impl | CompCert | App Impl | Gcc | Firmware | Yosys | AL LlLLL
[F*] 3 [Low*] [C] [Asm] [Binary] —|cPU| ROM |—
app developer — /O RAM E
System Software Hardware | FLASH |C
C/Asm erilo [TTTTTT]
| | 1 [Verilog System-on-a-
platform developer Chip (SOC)

Software verification 23 Hardware verification

Implementation

100 LoC
building on F* and Low*

8,000 LoC of Racket
y equivalen building on Rosette

model FX

App Spec App Impl | KarameL | App Impl | compCert | App Impl gec | Firmware | yosys | LLLALLLL
[F*] l [Low*] [C] [Asm] [Binary] —|cPu || ROM |—
app developer — /O RAM E
System Software Hardware | FLASH |C

C/Asm erilo [TTTTTT]
| | 1 [Verilog System-on-a-

platform developer Chip (SOC)

Software verification 23 Hardware verification

model FX

100 LoC

app developer

building on F* and Low*

Implementation

KaRaMeL

Software verification

| App Impl

[C]

CompCert R

Unmodified KaRaMelL, GCC,

Yosys...

23

8,000 LoC of Racket
building on Rosette

Firmware
[Binary]

Hardware
[Verilog]

atform developer

HEEEEEE
CPU | ROM

/0 | RAM

FLASH
BERREER
System-on-a-

Chip (SoC)

Hardware verification

Parfait case studies

HSM Spec Driver

Platform Software

Implementation

Hardware

ECDSA signer 40 LoC 100 LoC

Password hasher 30 LoC 100 LoC

24

Ibex 2,300 LoC
PicoRV32 2,300 LoC
Ibex 1,000 LoC
PicoRV32 1,000 LoC

13,500 LoC
3,000 LoC
13,500 LoC
3,000 LoC

f/
f

/
‘f
|

Parfait case studies

Password hasher/ 30 LoC 100 LoC

) \\\

24

PicoRV32 1,000 LoC

: Implementation
HS B Spec Driver Platform Software Hardware
N Ibex 2,300 LoC 13,500 LoC
¢ BCDSA signer A\ 40 LoG 100 LoC o RV32 2,300 LoC 3,000 LoC
Ibex 1,000 LoC 13,500 LoC

3,000 LoC

Parfait case studies

HSM Spec Driver Platform Implementation
~___Softwa Hardware

| 2.300 LoC 13,500 Lc
ECDGSA signer 40 LoC 100 LoC /PicoRV32 2,300 LoC 3,000 LoC

\ Ibex 1,000 LoC 13,500 LoC /
Password hasher 30 LoC 100 LoC \,. oRV32 1,000LoC 3,000 Lo€

24

Parfait case studies

TN Implementation
‘ \, . p
HSM / Spec Driver Platform Software Hardware
| ’ Ibex 2,300 LoC 13,500 LoGC
ECDSA signer | 40 LoC | 100 LoC PicoRV32 2,300 LoC 3,000 LoC
Ibex 1,000 LoC 13,500 LoC

Password hashe 30 Lo 100 LoC PicoRV32 1,000LoC 3,000 LoC

Spec LOC doesn't include specs from HACL, which we use without modification

24

Parfait case studies

Implementation

HSM Spec Driver Hlatform o oone Hardware

| — Tbex 2,300LoC 13,500 LoC =
ECDSA signer 40 LoC 100 Lo BicoRV3Z—2-300 LoC—3.000 LoC
Ibex 1,000 LoC 13,500 LoC

PicoRV32 1,000 LoC 3,000 LoC

Password hasher 30 LoC 100 LoC

24

Run-time performance

HSM ECDSA sig/s
Parfait ECDSA/Ibex 1.1
Nitrokey HSM 2 12.5

YubiHSM 2 13.7

Run-time performance

Limited by CompCert

HSM ECDSA sig/s
Parfait ECDSA/Ibex 1.1
Nitrokey HSM 2 12.5

YubiHSM 2 13.7

25

Run-time performance

Limited by CompCert

HSM ECDSA sig/s

Parfait ECDSA/Ibex 1.1
Nitrokey HSM 2 12.5

If CompCert was as
, ood as GCC: 8.1 sia/s
YubiHSM 2 137 | ° J

25

Bugs captured by IPR and Parfait

proof

_~ pre/postcondition reasoning

lockstep

app developer

KaRaMeL

| App Impl

[C]

CompCert

proof

_~symbolic circuit simulation

functional-physical simulation

| App Impl
[Asm]

Firmware
[Binary]

System Software
[C/Asm]

b &

26

Hardware
[Verilog]

platform developer

cPU || ROM

110 || RAM

FLASH

System-on-a-

Chip (SoC)

Bugs captured by IPR and Parfait

Logic bugs

Use-after-free bugs
Software-level leakage (e.g., through error codes)

proof

_~ pre/postcondition reasoning

lockstep

app developer

KaRaMeL

| App Impl

[C]

CompCert

proof

_~symbolic circuit simulation

functional-physical simulation

| App Impl
[Asm]

Firmware
[Binary]

System Software
[C/Asm]

b &

26

Hardware
[Verilog]

platform developer

cPU || ROM

/0 | RAM

FLASH

System-on-a-

Chip (SoC)

Bugs captured by IPR and Parfait

proof

_~ pre/postcondition reasoning

lockstep

app developer

KaRaMeL

Miscompilation bugs

| App Impl

[C]

proof

_~symbolic circuit simulation

functional-physical simulation

CompCert .

[Asm]

Firmware
[Binary]

System Software
[C/Asm]

b &

26

Hardware
[Verilog]

platform developer

cPU || ROM

/0 | RAM

FLASH

System-on-a-

Chip (SoC)

Bugs captured by IPR and Parfait

proof

_~ pre/postcondition reasoning

lockstep

app developer

KaRaMeL

| App Impl

[C]

Software, compiler, or hardware-induced timing leak
System software bugs

Linker script bugs
Stack overflow
CPU bug (e.g., pipeline hazard)

proof

_~symbolic circuit simulation

functional-physical simulation

CompCert N

[Asm]

Firmware
[Binary]

System Software
[C/Asm]

b &

26

Hardware
[Verilog]

platform developer

cPU || ROM

110 || RAM

FLASH

System-on-a-

Chip (SoC)

Bugs captured by IPR and Parfait

No special-case handling for any of these bugs:

proof all captured by verifying IPR between
application specification and circuit-level implementation.

App Sp L]
[FX] ROM

RAM

LASH

Asm \/erl Og RERERER
! System-on-a-
platform developer Chip (SoC)

26

Evaluation: low effort software proofs

Can implement and verify a new app in a
couple hours, reusing existing proofs from

HACLX

App Proof Dev time
ECDSA signer 500 LoC —

27

Evaluation: low effort hardware proofs decoupled from software

Can port to a different CPU in a couple hours of dev time
Make the computer do the hard work
No app-specific proof code

But verification is end-to-end for specific app

Verification
Proof size (LoC) ECDSA signer Password hasher
Platform Emulator Hints Mapping Devtime Time Cycles/s Time Cycles/s
Ibex 10 - 80 hrs 304 0.10 hrs 289

PicoRV32 >0 250 10 A 2 hours 100 hrs 671 0.14 hrs 588

28

Evaluation: low effort hardware proofs decoupled from software

Can port to a different CPU in a couple hours of dev time
Make the computer do the hard work
No app-specific proof code

But verification is end-to-end for specific app

Verification
Proof size (LoC) ECDSA signer Password hasher
Platform Emulator Hints Mapping Devtime Time Cycles/s Time Cycles/s

Ibex 50 9250 10 — 80 hrs 304 0.10 hrs 289

PicoRV32 2 hours“ 100 hrs 671 0.14 hrs 588

28

Evaluation: low effort hardware proofs decoupled from software

Can port to a different CPU in a couple hours of dev time
Make the computer do the hard work
No app-specific proof code

But verification is end-to-end for specific app

Verification
_ECDSA signer Password hasher
Time \Cycles/s ~ Time Cycles/s
50 250

- 80hrs)| 304 0.10 hrs 289
PicoRV32 10 A 2 hours, 100 hrs 671 0.14 hrs 588

=] P

Proof size (LoC)
Platform Emulator Hints Mapping Dev tim //’

Ibex 10

28

Evaluation: low effort hardware proofs decoupled from software

Can port to a different CPU in a couple hours of dev time
Make the computer do the hard work
No app-specific proof code

But verification is end-to-end for specific app

—

Proof size (LoC) _ ECDSA 51gner Password hasher =
Platform Emulator Hints Mapping Dev time Time Cycles/s——Timme ~ycles/s
Ibex S0 250 10 - 80 hrs 304 0.10 hrs 289

PicoRV32 10 A 2 hours 100 hrs 671 0.14 hrs 588

28

Related work

Hardware/software co-verification: Bedrock? , CakeML , Knox

Focused on correctness, not confidentiality (including side-channel leakage)
Knox does not scale to HSMs with software like public-key crypto

Leakage models: HACL* , ct-verif . SideTrall , CompCert-CT
LeaVe .

No end-to-end (application-level spec to RTL) results

Parfait is the first to verify non-leakage from app spec to RTL with modular proofs

29

Conclusion

Information-Preserving Refinement (IPR) formalizes correctness, security,
and non-leakage

Transitive IPR: scaling proofs of IPR with modularity

Proof techniques for IPR: proving IPR across the software/hardware stack
Parfait verification framework: implements these techniques

Application of Parfait to HSMs
anish.io/parfait

30

http://anish.io/parfait

