Synthesizing Robust Adversarial Examples

Anish Athalye*, Logan Engstrom*, Andrew Ilyas*, Kevin Kwok

Adversarial examples

Adversarial examples

• Imperceptible perturbations to an input can change a neural network's prediction

88% tabby cat

99% guacamole

Adversarial examples

Given: Input image *x*, target label *y*

Optimize:

arg max \mathbf{X}'

 $P\left(y \mid \mathbf{x}'\right)$ subject to $d(\mathbf{x}, \mathbf{x}') < \epsilon$

step 00

Do adversarial examples work in the physical world?

Adversarial examples in the physical world

(a) Image from dataset

(b) Clean image

(c) Adv. image, $\epsilon = 4$

(Kurakin et al. 2016)

Before Foveation After Foveation

Foveation-based Mechanisms Alleviate Adversarial Examples (Luo et al. 2015)

... or not?

NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles (Lu et al. 2017)

Standard examples are fragile

Zoom: 1.000000x

Are adversarial examples fundamentally fragile?

Image processing pipeline

optimize $P(y | \mathbf{x}')$ using gradient descent

Physical world processing pipeline

these are randomized

Challenge: No direct control over model input

Attack: Expectation Over Transformation

optimize $\mathbb{E}_{t \sim T} \left[P(y \mid t(\mathbf{x}')) \right]$ using gradient descent (sampling, chain rule, differentiating through t)

is differentiable

these are randomized but the distribution T is known

EOT produces robust examples

 $T = \{rescale from 1x to 5x\}$

EOT produces robust physical-world examples

T = {rescale + rotate + translate + skew}

Can we make this work with 3D objects?

Physical world 3D processing pipeline

PARAMETERS

is this differentiable?

MODEL

PREDICTIONS

Differentiable rendering

- Simplest renderer: linear transformation of texture

• For any pose, 3D rendering is differentiable with respect to texture

EOT produces 3D adversarial objects

ff, drop, lith, me agama ega U

EOT reliably produces 3D adversarial objects

	Inputs	Classification accuracy	Attacker success rate	Distortion (I2)
2D	Original	70%	N/A	0
	Adversarial	0.9%	96.4%	5.6 × 10-5
3D	Original	84%	N/A	0
	Adversarial	1.7%	84.0%	6.5 × 10 ⁻⁵

Implications

- Defenses based on randomized input transformations are insecure
- Adversarial examples / objects are a physical-world concern

Poster (and live demo): 6:15 – 9:00pm @ Hall B #73